Skip to content
1887
Volume 36, Issue 2
  • ISSN: 0032-1400

Abstract

The characterisation of platinum group metals catalysts is commonly carried out by temperature-programmed reduction, the spectrum of which has been used as a “finger-print” of the reducibility of the catalyst. Recent literature suggests that the utility of temperature-programmed reduction can be further enhanced by combining it with other techniques, such as temperature-programmed desorption and thermogravimetry. Temperature-programmed reduction can be used to investigate phenomena such as metal-support interaction and bimetal formation qualitatively, and to assess quantitatively the stoichiometry of the catalytic precursor. It may also be used to assess metal distribution in a composite oxide supported precursar. An overview of the concepts and applications of temperature-programmed reduction is presented here, and a selection of recent reported methodologies and findings on supported platinum group metal catalysts are discussed.

Loading

Article metrics loading...

/content/journals/10.1595/003214092X36298103
1992-01-01
2024-07-22
Loading full text...

Full text loading...

/deliver/fulltext/pmr/36/2/pmr0036-0098.html?itemId=/content/journals/10.1595/003214092X36298103&mimeType=html&fmt=ahah

References

  1. Jones A., and McNicol B. D. Temperature-Programmed Reduction for Solid Materials Characterization”, Marcel Dekker, New York, 1986 [Google Scholar]
  2. Nonti D. A. M., and Baiker A. J. Catal., 1983, 83, 323 [Google Scholar]
  3. Huang Y.-J., Xue J., and Schwarz J. A. J. Catal., 1988, 111, 59 [Google Scholar]
  4. Falconer J. L., and Schwarz J. A. Catal. Rev.-Sci. Eng., 1983, 25, 141 [Google Scholar]
  5. Gentry S. J., and Walsh P. T. J. Chem. Soc. Faraday I, 1982, 78, 1515 [Google Scholar]
  6. Isaccs B. H., and Petersen E. E. J. Catal, 1982, 77, 43 [Google Scholar]
  7. Lycourghiotis A., Defosse C., Delannay F., Le-maitre J., and Delmon B. J. J. Chem. Soc. Faraday I, 1980, 76, 1677 [Google Scholar]
  8. Yao H. C., Japar S., and Shelef M. J. Catal, 1977, 50, 407 [Google Scholar]
  9. Yao H. C., Sieg M., and Plummer H. K. Jr. J. Catal, 1979, 59, 365 [Google Scholar]
  10. Lieske H., and Volter J. J. Phys. Chem., 1985, 89, 1841 [Google Scholar]
  11. Shyu J. Z., and Otto K. J. Catal, 1989, 115, 16 [Google Scholar]
  12. Subramanian S., and Schwarz J. A. Appl. Catal, 1991, 68, 131 [Google Scholar]
  13. Subramanian S., and Schwarz J. A. Appl. Catal, 1991, 74, 65 [Google Scholar]
  14. Subramanian S., and Schwarz J. A. J. Catal, 1991, 127, 201 [Google Scholar]
  15. Subramanian S., and Schwarz J. A. Langmuir, 1991, 7, 1436 [Google Scholar]
  16. Mile B., Stirling D., Zamimitt M. A., Lovell A., and Webb M. J. Catal, 1988, 114, 217 [Google Scholar]
  17. Tauster S. J., and Fung S. C. J. Catal, 1978, 55, 29 [Google Scholar]
  18. Sinfelt J. H. Bimetallic Catalysts: Discoveries, Concepts, and Applications”, John Wiley, New York, 1983 [Google Scholar]
  19. Subramanian S., and Schwarz J. A. AIChE National Meeting, Washington D.C., 1988 [Google Scholar]
  20. Contescu Cr., Sivaraj Ch., and Schwarz J. A. Appl Catal, 1991, 74, 95 [Google Scholar]
/content/journals/10.1595/003214092X36298103
Loading
/content/journals/10.1595/003214092X36298103
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error