Skip to content
1887
Volume 36, Issue 2
  • ISSN: 0032-1400

Abstract

The characterisation of platinum group metals catalysts is commonly carried out by temperature-programmed reduction, the spectrum of which has been used as a “finger-print” of the reducibility of the catalyst. Recent literature suggests that the utility of temperature-programmed reduction can be further enhanced by combining it with other techniques, such as temperature-programmed desorption and thermogravimetry. Temperature-programmed reduction can be used to investigate phenomena such as metal-support interaction and bimetal formation qualitatively, and to assess quantitatively the stoichiometry of the catalytic precursor. It may also be used to assess metal distribution in a composite oxide supported precursar. An overview of the concepts and applications of temperature-programmed reduction is presented here, and a selection of recent reported methodologies and findings on supported platinum group metal catalysts are discussed.

Loading

Article metrics loading...

/content/journals/10.1595/003214092X36298103
1992-01-01
2024-12-21
Loading full text...

Full text loading...

/deliver/fulltext/pmr/36/2/pmr0036-0098.html?itemId=/content/journals/10.1595/003214092X36298103&mimeType=html&fmt=ahah

References

  1. A. Jones, B. D. McNicol, Temperature-Programmed Reduction for Solid Materials Characterization”, Marcel Dekker, New York, 1986 [Google Scholar]
  2. D. A. M. Nonti, A. Baiker, J. Catal., 1983, 83, 323 [Google Scholar]
  3. Y.-J. Huang, J. Xue, J. A. Schwarz, J. Catal., 1988, 111, 59 [Google Scholar]
  4. J. L. Falconer, J. A. Schwarz, Catal. Rev.-Sci. Eng., 1983, 25, 141 [Google Scholar]
  5. S. J. Gentry, P. T. Walsh, J. Chem. Soc. Faraday I, 1982, 78, 1515 [Google Scholar]
  6. B. H. Isaccs, E. E. Petersen, J. Catal, 1982, 77, 43 [Google Scholar]
  7. A. Lycourghiotis, C. Defosse, F. Delannay, J. Le-maitre, B. J. Delmon, J. Chem. Soc. Faraday I, 1980, 76, 1677 [Google Scholar]
  8. H. C. Yao, S. Japar, M. Shelef, J. Catal, 1977, 50, 407 [Google Scholar]
  9. H. C. Yao, M. Sieg, H. K. Plummer Jr., J. Catal, 1979, 59, 365 [Google Scholar]
  10. H. Lieske, J. Volter, J. Phys. Chem., 1985, 89, 1841 [Google Scholar]
  11. J. Z. Shyu, K. Otto, J. Catal, 1989, 115, 16 [Google Scholar]
  12. S. Subramanian, J. A. Schwarz, Appl. Catal, 1991, 68, 131 [Google Scholar]
  13. S. Subramanian, J. A. Schwarz, Appl. Catal, 1991, 74, 65 [Google Scholar]
  14. S. Subramanian, J. A. Schwarz, J. Catal, 1991, 127, 201 [Google Scholar]
  15. S. Subramanian, J. A. Schwarz, Langmuir, 1991, 7, 1436 [Google Scholar]
  16. B. Mile, D. Stirling, M. A. Zamimitt, A. Lovell, M. Webb, J. Catal, 1988, 114, 217 [Google Scholar]
  17. S. J. Tauster, S. C. Fung, J. Catal, 1978, 55, 29 [Google Scholar]
  18. J. H. Sinfelt, Bimetallic Catalysts: Discoveries, Concepts, and Applications”, John Wiley, New York, 1983 [Google Scholar]
  19. S. Subramanian, J. A. Schwarz, AIChE National Meeting, Washington D.C., 1988 [Google Scholar]
  20. Cr. Contescu, Ch. Sivaraj, J. A. Schwarz, Appl Catal, 1991, 74, 95 [Google Scholar]
/content/journals/10.1595/003214092X36298103
Loading
/content/journals/10.1595/003214092X36298103
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test