Skip to content
1887
Volume 37, Issue 1
  • ISSN: 0032-1400

Abstract

The organometallic chemistry of palladium is dominated by the +II oxidation state, and the chemistry of complexes containing simple organic groups bonded to palladium in the +IV oxidation state has developed only recently. Organic synthesis and catalytic reactions that may involve undetected palladium(IV) intermediates have been suggested frequently, and the new oxidation state +IV chemistry provides some support for these proposals, and gives encouragement for the development of new systems involving palladium(IV). The chemistry of organopalladium(IV) is reviewed here, and possible catalytic roles forpalladium(IV) are discussed. The synthesis and decomposition reactions of palladium(IV) complexes provide “models” for catalytic proposals. The palladium(IV) complexes are formed by oxidative addition of organohalides to palladium(II) complexes, and most complexes decompose under mild conditions by carbon-carbon bond formation in reductive elimination reactions, for example, for methyl(pheny1) (2,2’-bipyridyl)palladium(II) as a substrate, oxidative addition of benzyl bromide gives PdIV BrMePh(CHPh) (bpy), which reductively eliminates toluene to form the complex PdIIBr(CHPh)(bpy).

Loading

Article metrics loading...

/content/journals/10.1595/003214093X37127
1993-01-01
2024-07-23
Loading full text...

Full text loading...

/deliver/fulltext/pmr/37/1/pmr0037-0002.html?itemId=/content/journals/10.1595/003214093X37127&mimeType=html&fmt=ahah

References

  1. Heck R. F. Palladium Reagents in Organic Synthesis”, Academic, New York, 1985 [Google Scholar]
  2. Milstein D., and Stille J. K. J. Am. Chem. Soc., 1979, 101, 4992; (b) [Google Scholar]
  3. Gillie A., and Stille J. K. J. Am. Chem. Soc., 1980, 102, 4933; (c) [Google Scholar]
  4. Loar M. K., and Stille J. K. J. Am. Chem. Soc., 1981, 103, 4174; (d) [Google Scholar]
  5. Holton R. A., and Natalie K. J. Tetrahedron Lew, 1981, 22, 267; (e) [Google Scholar]
  6. Tremont S. J., and Rahman H. U. J Am. Chem. Soc., 1984, 106, 5759; (f) [Google Scholar]
  7. Maassarani F., Pfeffer M., Le Borgne G., Jastrzebski J. T. B. H., and van Koten G. Organometallics, 1987, 6, 1111; (g) [Google Scholar]
  8. Catellani M., and Chiusoli G. P. J. Organomet. Chem., 1988, 346, C27; (h) [Google Scholar]
  9. Catellani M., Chiusoli G. P., and Costa M. PureAppl. Chem., 1990, 62, 623; (i) [Google Scholar]
  10. Kurosawa H., Emoto M., and Kawasaki Y. J. Organomet. Chem., 1988, 346, 137; (j) [Google Scholar]
  11. Reiser O., Weber M., and de Meijere A. Angevi. Chem. Int. Ed. Engl., 1989, 28, 1037; (k) [Google Scholar]
  12. Albinati A., Affolter S., and Pregosin P. S. J. Organomet. Chem., 1990, 395, 231 [Google Scholar]
  13. Ketley A. D., Fisher L. P., Berlin A. J., Morgan C. R., Gorman E. H., and Steadman T. R. Inorg. Chem., 1967, 6, 657; (b) [Google Scholar]
  14. Henry P. M. Acc. Chem. Res., 1973, 6, 16; (c) [Google Scholar]
  15. Oehme G. J. Prakt. Chem., 1984, 326, 779; (d) [Google Scholar]
  16. Thummel R. P., and Jahng Y. J. Org. Chem., 1987, 52, 73; (e) [Google Scholar]
  17. Ryabov A. D., Eliseev A. V., and Yatsimirsky A. K. Appl. Organomet. Chem., 1988, 2, 101; (f) [Google Scholar]
  18. Trost B. M. Acc Chem. Res., 1990, 23, 34; (g) [Google Scholar]
  19. Guibert I., Neibecker D., and Tkatchenko I. J. Chem. Soc, Chem. Commun., 1989, 1850 [Google Scholar]
  20. Uson R., Fornies J., and Navarro R. J. Organomet. Chem., 1975, 96, 307, Synth. React. Inorg. Met.-Org. Chem., 1977, 7, 235 [Google Scholar]
  21. Byers P. K., Canty A. J., Skelton B. W., and White A. H. J. Chem. Soc, Chem. Commun., 1986, 1722 [Google Scholar]
  22. de Graaf W., Boersma J., Smeets W. J. J., Spek A. L., and van Koten G. Organometallics, 1989, 8, 2907; (b) [Google Scholar]
  23. de Graaf W., Boersma J., and van Koten G. Organometallics, 1990, 9, 1479 [Google Scholar]
  24. Catellani M., and Mann B. E. J. Organomet. Chem., 1990, 390, 251 [Google Scholar]
  25. Canty A. J. Acc. Chem. Res., 1992, 25, 83 [Google Scholar]
  26. Canty A. J., Traill P. R., Skelton B. W., and White A. H. ibid., Ref. 7, 1991, 402, C33; and 1992, 433, 213
  27. Byers P. K., Canty A. J., Traill P. R., and Watson A. A. J. Organomet. Chem., 1990, 390, 399 [Google Scholar]
  28. Markies B. A., Canty A. J., Janssen M. D., Spek A. L., Boersma J., and van Koten G. Red. Trav. Chim. Pays Bas, 1991, 110, 477 [Google Scholar]
  29. Bennett M. A., Canty A. J., Felixberger J., Rendina L. M., Sunderland C., and Willis A. C.
  30. Byers P.K., Canty A.J., Puddephatt R.J., and Scott J. D. ibid., Ref. 6, 1988, 7, 1363; (b)
  31. Aye K-T., Canty A. J., Crespo M., Rridephatt R. J., Scott J. D., and Watson A. A. op. at., 1989, 8, 1518
  32. Canty A. J., Watson A. A., Skelton B. W., and White A. H. J. Organomet. Chem., 1989, 367, C25 [Google Scholar]
  33. Brown J. M., and Cooley N. A. Chem. Rev., 1988, 88, 1031 [Google Scholar]
  34. Ortiz J. V., Havlas Z., and Hoffmann R. Helv. Chim. Acta, 1984, 67, 1; (b) [Google Scholar]
  35. Terheijden J., van Koten G., Vinke I. C., and Spek A. L. J. Am. Chem. Soc., 1985, 107, 2891 [Google Scholar]
  36. Anderson C. M., Puddephatt R. J., Ferguson G., and Lough A.J. J. Chem. Soc, Chem. Commun., 1989, 1297; (b) [Google Scholar]
  37. Canty A. J., Honeyman R. T., Skelton B. W., and White A. H. J. Organomet. Chem., 1990, 389, 277 [Google Scholar]
  38. Pope W. J., and Peachey S. J. Proc. Chem. Soc., London, 1907, 23, 86 [Google Scholar]
/content/journals/10.1595/003214093X37127
Loading
/content/journals/10.1595/003214093X37127
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error