Skip to content
Volume 38, Issue 4
  • ISSN: 0032-1400


Electrocatalysis is of considerable interest in many areas, such as in energy conversion and storage, electroanalysis, water purification and electroless metal deposition, and some of the most active materials in this area are the noble metals and their oxides, for example platinum and ruthenium dioxide. It is widely accepted that (even in heterogeneous catalysis in general) there is a wide gap between theory and practice: most industrial catalysts are developed by repetitive testing techniques. It has been proposed by the author that the fundamental problem in this area is the fact that the active interfacial mediators in electrocatalysis, which are the adatoms and incipient hydrous oxide species, reside virtually outside the solid lattice and exhibit chemical – and especially redox – behaviour very different to that of well embedded surface species. There is an urgent need to develop and apply highly sensitive techniques to investigate the behaviour of such quite low coverage reactive surface/interfacial species.


Article metrics loading...

Loading full text...

Full text loading...



  1. Conway B. E., Tilak B. V., Pines H., and Weisz P. B. Advances in Catalysis”, Vol. 38, eds. Academic Press, New York, 1992, pp. 1147 [Google Scholar]
  2. Trasatti S., Genscher H., and Tobáis C W. Advances in Electrochemistry and Electrochemical Engineering”, Vol. 2, eds. VCH Publishers Inc., Weinheim, 1992, pp. 185 [Google Scholar]
  3. Beden B., Leger J.-M., Lamy C., Bockris J. O’M., Conway B. E., and White R. E. Modern Aspects of Electrochemistry”, No. 22, eds. Plenum Press, New York, 1992, pp. 97264 [Google Scholar]
  4. Frankfurter Allgem. Zeit., 6th July 1994, p. 2 [Google Scholar]
  5. Gilman S., and Bard A. J. Electroanalytical Chemistry”, Vol. 2, ed. Marcell Dekker, New York, 1967, pp. 111192 [Google Scholar]
  6. Parsons R., and VanderNoot T. J. Electroanal. Chem., 1989, 257, 9 [Google Scholar]
  7. Bond G. C Acc Chem. Res., 1993, 26, 490 [Google Scholar]
  8. Schlögl R. Angevi. Chem., Int. Ed. Engl., 1993, 32, 381 [Google Scholar]
  9. Pletcher D. J. Appl Electrochem., 1984, 14, 403 [Google Scholar]
  10. Lipkowski J., and Ross P. N.Structure of Electrified Interfaces”, eds. VCH Publishers Inc., Weinheim, 1993 [Google Scholar]
  11. Christensen P. A. Chem. Soc. Rev., 1992, 21, 197 [Google Scholar]
  12. Halley J. W., and Blum L. Proc Symp. “Microscopic Models of Electrode-Electrolyte Interfaces”, PV 93–5, eds. The Electrochemical Society, Pennington, N.J., 1993 [Google Scholar]
  13. Taylor H. S. Proc. Roy. Soc. Lond. A, 1925, 108, 105 [Google Scholar]
  14. Burke L. D. Electrochim. Acta, 1994, 39, 1841 [Google Scholar]
  15. Adamson A. W. Physical Chemistry of Surfaces”, 3rd Edn, John Wiley, New York, 1976, p. 244 [Google Scholar]
  16. Parmigiani F., Kay E., and Bagus P. S. J. Electron. Spectrosc Relat. Phenom., 1990, 50, 39 [Google Scholar]
  17. Desilvestro J., and Weaver M. J. J. Electroanal. Chem., 1986, 209, 1069 [Google Scholar]
  18. Burke L. D., Lyons M. E. G., White R. E., Bockris J. O’M., and Conway B. E. Modern Aspects of Electrochemistry”, No. 18, eds. Plenum Press, New York, 1986, pp. 169248 [Google Scholar]
  19. Burke L. D., and O’Leary W. A. J. Electrochem. Soc., 1988, 135, 1965 [Google Scholar]
  20. Burke L. D., and O’Leary W A. J. Appl Electrochem., 1989, 19, 758 [Google Scholar]
  21. Woods R., and Bard A. J. Electroanalytical Chemistry”, Vol. 9, ed. Marcel Dekker, New York, 1976, p. 119 [Google Scholar]
  22. Burke L. D., Casey J. K., and Morrissey J. A. Electrochim. Acta, 1993, 38, 897 [Google Scholar]
  23. Burke L. D., Casey J. K., Morrissey J. A., and O’Sullivan J. F. J. Appl Electrochem., 1994, 24, 30 [Google Scholar]
  24. Burke L. D., Morrissey J. A., Clayton C., Lumsden J., Hashimoto K., and Misawa T. Corrosion, Electrochemistry and Catalysis of Metastable Metals and Intermetallics”, PV 93-30, eds. The Electrochemical Society, Pennington, N.J., 1993, pp. 357368 [Google Scholar]
  25. Burke L. D., Buckley D. T., and Morrissey J. A. Analyst, 1994, 119, 841 [Google Scholar]
  26. Burke L. D., and Casey J. K. Electrochim. Acta, 1992, 37, 1817 [Google Scholar]
  27. Burke L. D., and Buckley D. T. J. Electroanal. Chem., 1994, 366, 239 [Google Scholar]
  28. Burke L. D., and Lee B. H. ibid., 1992, 330, 637
  29. Lyons M. E. G., Lyons C. H., Michas A., and Barden P. N. ibid., 1993, 351, 245
  30. Burke L. D., Healy J. F., O’Dwyer K. J., and O’Leary W. A. J. Electrochem. Soc., 1989, 136, 1015 [Google Scholar]
  31. Somarjai G. A. Chemistry in Two Dimensions: Surfaces”, Cornell University Press, 1981, p. 392 [Google Scholar]
  32. Wolfram T., Ellialtioglu S., and Smith J. R. Theory of Chemisorption”, ed. Springer-Verlag, Berlin, 1980, p. 150 [Google Scholar]
  33. Burke L. D., and Healy J. F. J. Electrochem. Soc., 1981, 124, 327 [Google Scholar]
  34. Burke L. D., McCarthy M. M., and Roche M. B. C J. Electroanal. Chem., 1984, 167, 291 [Google Scholar]
  35. Burke L. D., and McRann M. ibid., 1981, 125, 387
  36. Kunimatsu K., Seki H., Golden W. G., Gordon J. G., and Philpot M. R. Langmuir, 1986, 2, 464 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error