Skip to content
Volume 41, Issue 3
  • ISSN: 0032-1400


Proton exchange membrane fuel cells operating on hydrogen/air are being considered as high efficiency, low pollution power generators for stationary and transportation applications. There have been many successful demonstrations of this technology in recent years. However, to penetrate these markets the cost of the fuel cell stack must be reduced. This report details the progress made on reductions in the stack cost by lowered platinum catalyst loadings in the latest stack designs, the development of lower cost membrane electrolytes, the design of alternative bipolar flow field plates, and the introduction of mass production technology. Despite such advances, there is still a need for further reductions in the stack cost, through improvements in the performance of the membrane electrode assembly. However, improved stack performance must be demonstrated not only with pure hydrogen fuel but also, more particularly, with reformate fuel, where tolerance to poisoning by carbon monoxide and carbon dioxide needs to be improved. Advances that are required in the ancillary sub-systems are also briefly considered here.


Article metrics loading...

Loading full text...

Full text loading...



  1. Watkins D. S., Fuel Cell Systems”, eds. Blomen L. J. M. J., and Mugerwa M. N. Plenum Press, New York, 1993, Chapter 11 [Google Scholar]
  2. Borroni-Bird C. E. J. Power Sources, 1996, 61, 33 [Google Scholar]
  3. Prater K. J. Power Sources 1994, 51, 129 [Google Scholar]
  4. Prater K. Power Sources, 1990, 29, 239 [Google Scholar]
  5. Wilson M. S., and Gottesfeld S. J. Electrochem. Soc, 1992, 139, L28 [Google Scholar]
  6. Wilson M. S., Valerio J. A., and Gottesfeld S. Electrochim. Acta 1995, 40, 355 [Google Scholar]
  7. Ferreira C., and Srinivasan S. 94-1, p. 969, The Electrochem. Soc, Pennington, New Jersey, 1994 [Google Scholar]
  8. Sasikumar G., Raja M., and Parthasarathy S. Electrochim. Acta, 1995, 40, 285 [Google Scholar]
  9. Driven P. G., Engelen W. J., and Van Der Poorten C. J. M. J. Appl. Electrochem., 1995, 25, 122 [Google Scholar]
  10. Uchida M., Aoyama Y., Eda N., and Ohta A. J. Electrochem. Soc, 1995, 142, 463 [Google Scholar]
  11. Taylor E. J., Anderson E. B., and Vilambi N. R K. J. Electrochem. Soc 1992, 139, L45 [Google Scholar]
  12. Aldebert P., Novel-Cattin F., Pineri M., Millet P., Doumain C., and Durand R. Solid State Ionics, 1989, 35, 3 [Google Scholar]
  13. Ralph T. R., Hards G. A., Keating J. E., Campbell S. A., Wilkinson D. P., Davis M., St-Pierre J., and Johnson M. C. J. Electrochem. Soc, submitted for publication [Google Scholar]
  14. Zawodzinski C., Wilson M. S., Gottesfeld S., Proc. First Int. Symp. on Proton Conducting Membrane Fuel Cells, eds. Gottesfeld S., Halpert G., and Landgrebe A. 95–23, p. 57, The Electrochem. Soc, Pennington, New Jersey, 1995 [Google Scholar]
  15. Wakizoe M., Velev O. A., and Srinivasan S. Electrochim. Acta, 1995, 40, 335 [Google Scholar]
  16. Doyle M. L. 11 th World Hydrogen Energy Conference, 1996, 23-28th June, Stuttgart, reviewed by Platinum Metals Rev., 1996, 40, (4), 175 [Google Scholar]
  17. Ralph T. R., Hards G. A., Thompsett D., and Gascoyne J. M. Extended Abstracts Fuel Cell Seminar, San Diego, 1994, 199 [Google Scholar]
  18. Denton J., Gascoyne J. M., and Thompsett D. European Appl.731, 520A; 1996 [Google Scholar]
  19. Barbir F., Markin F., Bahar B., and Kolde J. A. Extended Abstracts Fuel Cell Seminar, Orlando, 1996, 505 [Google Scholar]
  20. Springer T. E., Wilson M. S., and Gottesfeld S. J. Electrochem. Soc, 1993, 140, 3513 [Google Scholar]
  21. Ticianelli E. A., Berry J. G., and Srinivasan S. J. Appl. Electrochem., 1991, 21, 597 [Google Scholar]
  22. Hards G. A., Ralph T R., and Cooper S. J. ETSU (of the UK DTI) Report No. ETSU/FCR/002, “High Performance, Low Cost Membrane Electrode Assemblies for Solid Polymer Fuel Cells”, December 1992 [Google Scholar]
  23. Wilkinson D. P., Bos M., Knights S., Thompsett D., Hards G. A., and Ralph T. R.
  24. Iwase M., and Kawatsu S. 95–23, p. 12, The Electrochem. Soc, Pennington, New Jersey, 1995 [Google Scholar]
  25. Oetjen H. F., Schmidt V. M., Summing U., and Trila F. J. Electrochem. Soc, 1996, 143, 3838 [Google Scholar]
  26. Gottesfeld S., and Pafford J. J. Electrochem. Soc, 1988, 135, 2651 [Google Scholar]
  27. Steck A. E. Proc. First International Symposium on New Materials For Fuel Cell Systems, Montreal, 1995, 74 [Google Scholar]
  28. Kolde J. A., Bahar B., Wilson M. S., Zawodzinski T A., and Gottesfeld S. op.cit., (Ref. 14), Vol. 95–23, p. 193, The Electrochem. Soc, Pennington, New Jersey, 1995 [Google Scholar]
  29. Bahar B. Conference“Commercialising Fuel Cell Vehicles”, Chicago, 1996 [Google Scholar]
  30. Mallant R. K. A. M., Koene F. G. H., Verhoeve C. W. G., and Ruiter A. Extended Abstracts Fuel Cell Seminar, San Diego, 1994, 503 [Google Scholar]
  31. Lawrence R. J. U.S. Patent 4, 214, 969, 1980 [Google Scholar]
  32. Wilkinson D. P., Lamont G. J., Voss H. H., and Schwab C. World Appl. 95/16287A; 1995 [Google Scholar]
  33. Washington K. B., Wilkinson D. P., and Voss H. H. U.S. Patent 5,300,370, 1994 [Google Scholar]
  34. Edwards N., Ellis S. R, Frost J. C., Golunski S. E., Petch M. I., and Reinkingh J. G. European Fuel Cell News, 1996, 3, (2), 17 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error