Skip to content
1887
Volume 41, Issue 3
  • ISSN: 0032-1400

Abstract

Oxygen is an immensely important chemical species — essential for life. The need to determine levels of oxygen occurs in many diverse fields. In environmental analysis, oxygen measurement provides an indispensable guide to the overall condition of the ecology and it is routine practice to monitor oxygen levels continuously in the atmosphere and in water. In medicine, the oxygen levels in the expired air or in the blood of a patient are key physiological parameters for judging general health. Such parameters should ideally be monitored continuously, which may present problems. Determining oxygen levels in blood requires blood samples which may be difficult to take or impossible to take regularly — the elderly suffer from collapsed veins, while babies may only have 125 cm3 of blood. The measurement of oxygen levels is also essential in industries which utilise metabolising organisms: yeast for brewing and bread making, and the plants and microbes that are used in modern biotechnology, such as those producing antibiotics and anticancer drugs. Here, the background to oxygen measurements is described and work to develop new optical oxygen sensors which utilise the luminescence of platinum metals complexes is discussed.

Loading

Article metrics loading...

/content/journals/10.1595/003214097X413115127
1997-01-01
2024-03-01
Loading full text...

Full text loading...

/deliver/fulltext/pmr/41/3/pmr0041-0115.html?itemId=/content/journals/10.1595/003214097X413115127&mimeType=html&fmt=ahah

References

  1. Hitchman M. L. “Measurement of Dissolved Oxygen”, John Wiley, Geneva, 1978, Ch. 1 [Google Scholar]
  2. Seitz W. R. CRC Crit. Rev. Anal. Chem., 1988, 19, 135 [Google Scholar]
  3. Wolfbeis O. S., “Fiber Optic Chemical Sensors”, ed. and Wolfbeis O. S. II, CRC Press, Boca Ranton, FL, 1991, Ch. 10 [Google Scholar]
  4. Peterson J. I., and Vurek G. G. Science, 1984, 224, 123 [Google Scholar]
  5. Mills A., Chang Q., and McMurray N. Anal. Chem., 1992, 88, 1383 [Google Scholar]
  6. Moreno-Bondi M. C., Wolfbeis O. S., Leiner M. J. P., and Schaffar B. P. H. Anal. Chem., 1990, 62, 2377 [Google Scholar]
  7. Li L., and Walt D. R. Anal. Chem., 1995, 67, 3746 [Google Scholar]
  8. Carraway K. R., Demas J. N., DeGraff B. A., and Bacon J. R. Anal. Chem., 1991, 63, 337 [Google Scholar]
  9. Lin C.-L., and Sutin N. J. Phys. Chem., 1997, 80, 97 [Google Scholar]
  10. van Houten J., and Watts R. J. J. Am. Chem. Soc, 1976, 98, 4853 [Google Scholar]
  11. Lin C.-T., Bottcher W., Chou M., Creutz C., and Sutin N. J. Am. Chem. Soc, 1976, 98, 6536 [Google Scholar]
  12. Klimât I., and Wolfbeis O. S. Anal. Chem., 1995, 67, 3160 [Google Scholar]
  13. Demas J. N., Harris E. W., and McBride R. P. J. Am. Chem. Soc, 1977, 99, 3547 [Google Scholar]
  14. Nakamaru K., Nishio K., and Nobe H. Sci. Rep. Hirosaki Univ., 1979, 26, 57 [Google Scholar]
  15. Li X.-M., Ruan F.-C., and Wang K. Y. Analyst, 1993, 118, 289 [Google Scholar]
  16. Mills A., and Thomas M. Analyst, 1997, 122, 63 [Google Scholar]
  17. McMurray H. N., Douglas P., Busa C., and Garley M. S. J. Photochem. Photobiol, 1994, 80, 283 [Google Scholar]
  18. Klimant I., and Wolfbeis O. S. Anal. Chem., 1995, 67, 3160 [Google Scholar]
  19. Wolfbeis O. S., Leiner M. J. P., and Posch H. E. Mikrochim. Acta, 1986, 111, 359 [Google Scholar]
  20. Bacon J. R., and Demas J. N. Anal. Chem., 1987, 59, 2780 [Google Scholar]
  21. Hartmann P., Leiner M. J. P., and Iippitsch M. E. Anal. Chem., 1995, 67, 88 [Google Scholar]
  22. Preininger C., Klimant I., and Wolfbeis O. S. Anal Chem., 1994, 66, 1841 [Google Scholar]
  23. Vojnovic B., Blackwood E., Grundon M., Locke R. J., Newman R. G., West G., and Young W. K. “The Gray Laboratory Research Report 1995”, The Gray Laboratory Research Trust, Mount Vernon Hospital, Middlesex, U.K., 1995, p. 31 [Google Scholar]
  24. Mills A., and Williams F. Thin Solid Films, accepted for publication (MS No.: E-2170) [Google Scholar]
  25. Mills A., and Monaf L.
  26. Brandrup J., and Immergut E. H. “The Polymer Handbook”, 3rdEdn., Wiley, New York, 1989, p. VI/435 [Google Scholar]
  27. Xu W., McDonough R. C., Langsdorf B., Demas J. N., and DeGraff B. A. Anal. Chem., 1994, 66, 4133 [Google Scholar]
  28. Crank J., and Park G. S. “Diffusion in Polymers”, Academic Press, London, 1968, p. 21 [Google Scholar]
  29. Seymour R. B., and Carrher C. E. “Polymer Chemistry – An Introduction”, Marcel Dekker, New York, 3rd Edn., 1992, p. 394 [Google Scholar]
  30. Gewehr P. M., and Delpy D. T. Med. Biol. Eng. Comput., 1993, 31, 2 [Google Scholar]
  31. Gewehr P. M., and Delpy D. T. Med. Biol. Eng. Comput., 1993, 31, 11 [Google Scholar]
  32. Papkovsky D. B. Sens. Actuators B, 1995, 29, 213 [Google Scholar]
  33. Papkovsky D. B. Anal. Chem., 1995, 67, 4112 [Google Scholar]
  34. Hartmann P., and Trettnak W. Anal. Chem., 1996, 68, 2615 [Google Scholar]
  35. Beswick R. B., and Pitt C. W. Chem. Phys. Lett., 1996, 143, 589 [Google Scholar]
  36. Harriman A. Platinum Metals Rev., 1990, 34, (4), 181 [Google Scholar]
  37. Vanderkooi J. M., Maniara G., Green T J., and Wilson D. F. J. Biol. Chem., 1987, 262, 5476 [Google Scholar]
  38. Lee W. W.-S., Li K.-Y., Leung Y.-B., Chan C.-S., and Chan K. S. J. Mater. Chem., 1993, 3, 1031 [Google Scholar]
  39. Papkovsky D. B. Seni. Actuators B, 1993, 11, 293 [Google Scholar]
  40. Ohara T J. Platinum Metals Rev., 1995, 39, (2), 54 [Google Scholar]
  41. Rosenzweig Z., and Kopelman R. Anal. Chem., 1995, 67, 2650 [Google Scholar]
  42. Li L., and Walt D. R. Anal Chem., 1995, 67, 2650 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/003214097X413115127
Loading
/content/journals/10.1595/003214097X413115127
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error