- Home
- A-Z Publications
- Platinum Metals Review
- Previous Issues
- Volume 54, Issue 1, 2010
Platinum Metals Review - Volume 54, Issue 1, 2010
Volume 54, Issue 1, 2010
-
-
Asymmetric Transfer Hydrogenation in Water with Platinum Group Metal Catalysts
Authors: By Xiaofeng Wu, Chao Wang and Jianliang XiaoAsymmetric transfer hydrogenation (ATH) is the reduction of prochiral compounds with a hydrogen donor other than hydrogen gas in the presence of a chiral catalyst. The asymmetric reduction of a wide variety of ketone and aldehyde substrates has been carried out in water using catalysts based on complexes of ruthenium(II), rhodium(III) and iridium(III), affording fast reaction rates and good enantioselectivities without the use of organic solvents and with easy separation of catalyst and product. For ATH of ketones, the Rh(III) complexes appear to perform better than the Ru(II) and Ir(III) complexes in terms of activity, enantioselectivity and substrate scope. However, their performance varies with the choice of ligands, and simple Ir(III)-diamine complexes were found to be excellent catalysts for the reduction of aldehydes.
-
-
-
A Review of the Behaviour of Platinum Group Elements within Natural Magmatic Sulfide Ore Systems
Authors: By D. A. Holwell and I. McDonaldThe largest and most significant type of geological deposit of platinum group elements (PGEs) is that associated with magmatic base metal sulfide minerals in layered mafic or ultramafic igneous intrusions. The common association of PGEs with sulfide minerals is a result of processes of magmatic and sulfide liquid segregation and fractionation. The mineralogical nature of the ores is dependent on a number of factors during sulfide liquid fractionation. The most significant of these with regard to the mineralogy of the two most important metals, platinum and palladium, is the presence and concentration of semimetals such as bismuth and tellurium within the mineralising sulfide liquid. Whereas rhodium, iridium, osmium and ruthenium are almost always present in solid solution within the resultant base metal sulfide minerals; should sufficient semimetals be present, Pd and especially Pt will form discrete minerals (such as platinum bismuthides) around the margins of, and possibly away from, the sulfides.
-
Volumes & issues
-
Volume 58 (2014)
-
Volume 57 (2013)
-
Volume 56 (2012)
-
Volume 55 (2011)
-
Volume 54 (2010)
-
Volume 53 (2009)
-
Volume 52 (2008)
-
Volume 51 (2007)
-
Volume 50 (2006)
-
Volume 49 (2005)
-
Volume 48 (2004)
-
Volume 47 (2003)
-
Volume 46 (2002)
-
Volume 45 (2001)
-
Volume 44 (2000)
-
Volume 43 (1999)
-
Volume 42 (1998)
-
Volume 41 (1997)
-
Volume 40 (1996)
-
Volume 39 (1995)
-
Volume 38 (1994)
-
Volume 37 (1993)
-
Volume 36 (1992)
-
Volume 35 (1991)
-
Volume 34 (1990)
-
Volume 33 (1989)
-
Volume 32 (1988)
-
Volume 31 (1987)
-
Volume 30 (1986)
-
Volume 29 (1985)
-
Volume 28 (1984)
-
Volume 27 (1983)
-
Volume 26 (1982)
-
Volume 25 (1981)
-
Volume 24 (1980)
-
Volume 23 (1979)
-
Volume 22 (1978)
-
Volume 21 (1977)
-
Volume 20 (1976)
-
Volume 19 (1975)
-
Volume 18 (1974)
-
Volume 17 (1973)
-
Volume 16 (1972)
-
Volume 15 (1971)
-
Volume 14 (1970)
-
Volume 13 (1969)
-
Volume 12 (1968)
-
Volume 11 (1967)
-
Volume 10 (1966)
-
Volume 9 (1965)
-
Volume 8 (1964)
-
Volume 7 (1963)
-
Volume 6 (1962)
-
Volume 5 (1961)
-
Volume 4 (1960)
-
Volume 3 (1959)
-
Volume 2 (1958)
-
Volume 1 (1957)