Skip to content
Volume 58, Issue 2
  • ISSN: 0032-1400


The Hydrogen South Africa (HySA) programme is based upon the beneficiation of South Africa’s large platinum group metal (pgm) resources. The present article summarises some of the progress by HySA Systems, one of the three Competence Centres under the HySA Programme, since 2008. Work has been carried out on membrane electrode assembly and stack development for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) for use in combined heat and power (CHP) supplied by natural gas and hydrogen fuelled vehicle (HFV) applications. The emphasis is on improved carbon monoxide tolerance and simplified heat and humidity management, allowing simpler fuel cell systems to be designed. Metal hydrides modified with palladium are being explored as poisoning-tolerant hydrogen storage materials for stationary and special mobile applications, and metal organic frameworks (MOFs) modified with platinum as light-weight hydrogen storage with a high hydrogen storage capacity. Lastly research into hydrogen purification using Pd membrane reactors is focused on membrane support synthesis, hollow fibre seeding and development of the plating procedure.


Article metrics loading...

Loading full text...

Full text loading...



  1. The HySA Systems Integration & Technology Validation Competence Centre: (Accessed on 11th February 2014)
  2. Barrett S. ‘HySA Infrastructure: Producing and Using Hydrogen for Energy in South Africa – Part 1’, October 2013: (Accessed on 17th February 2014)
  3. Su H., Pasupathi S., Linkov B. J., Bladergroen V., and Pollet B. G. J. Power Sources, 2013, 242, 510 [Google Scholar]
  4. Su H., Pasupathi S., Bladergroen B., Linkov V., and Pollet B. G. Int. J. Hydrogen Energy, 2013, 38, (26), 11370 [Google Scholar]
  5. Felix C., Jao T.-C., Pasupathi S., and Pollet B. G. J. Power Sources, 2013, 243, 40 [Google Scholar]
  6. Schmidt T. J., and Baurmeister J. J. Power Sources, 2008, 176, (2), 428 [Google Scholar]
  7. Li Q., He R., Gao J.-A., Jensen J. O., and Bjerrum N. J. J. Electrochem. Soc., 2003, 150, (12), A1599 [Google Scholar]
  8. Chen C.-Y., and Lai W.-H. J. Power Sources, 2010, 195, (21), 7152 [Google Scholar]
  9. Zhang J., Xie Z., Zhang J., Tang Y., Song C., Navessin T., Shi Z., Song D., Wang H., Liu D. P., Wilkinson Z.-S., and Holdcroft S. J. Power Sources, 2006, 160, (2), 872 [Google Scholar]
  10. Scholta J., Zhang W., Jörissen L., and Lehnert W. ECS Trans., 2008, 12, 113 [Google Scholar]
  11. Bujlo P., Pasupathi S., Ulleberg Ø., Scholta J., Rabiu M. V., Nomnqa A., and Pollet B. G. Int. J. Hydrogen Energy, 2013, 38, (23), 9847 [Google Scholar]
  12. Sandrock G., ‘Applications of Hydrides’, in “Hydrogen Energy system: Production and Utilization of Hydrogen and Future Aspects”, ed. and Yürüm Y. Kluwer, NATO Advanced Science Institutes Series, Springer Science+Business Media, Dordrecht, The Netherlands, 1995, pp. 253280 [Google Scholar]
  13. Dantzer P. Mater. Sci. Eng.: A, 2002, 329–331, 313 [Google Scholar]
  14. Au M., Chen C., Ye Z., Fang T., Wu J., and Wang O. Int. J. Hydrogen Energy, 1996, 21, (1), 33 [Google Scholar]
  15. Sandrock G. D., and Goodell P. D. J. Less-Common Met., 1984, 104, (1), 159 [Google Scholar]
  16. Lototsky M. V., Williams M., Klochko V. A., Yartys Y. V., and Linkov V. M. J. Alloys Compd., 2011, 509, (2), S555 [Google Scholar]
  17. Williams M., Nechaev M. V., Lototsky A. N., and Linkov V. M. Eskom Holdings Ltd, ‘Method of Surface Modification of Metallic Hydride Forming Materials’, US Patent 8,354, 552; 2013 [Google Scholar]
  18. Williams M., Lototsky M. V., Nechaev A. N., and Linkov V. M. Eskom Holdings Ltd, ‘Hydride-Forming Material’, South Africa Appl. 2008/09123 [Google Scholar]
  19. Williams M., Yartys M. V., Lototsky V. M., Linkov A. N., Nechaev J. K., and Solberg V. A. Int. J. Energy Res., 2009, 33, (13), 1171 [Google Scholar]
  20. Lototskyy M., Williams K. D., Modibane M., Klochko Y., Linkov V., and Pollet B. G. J. Alloys Compd., 2013, 580, (1), S382 [Google Scholar]
  21. Modibane K. D., Williams M., Lototskyy M., Klochko M. W., Davids Y., and Pollet B. G. Int. J. Hydrogen Energy, 2013, 38, (23), 9800 [Google Scholar]
  22. Afsahi F., Vinh-Thang H., Kaliaguine S., and Mikhailenko S. J. Power Sources, 2013, 239, 415 [Google Scholar]
  23. Rowsell J. L. C., and Yaghi O. M. Angew. Chem. Int. Ed., 2005, 44, (30), 4670 [Google Scholar]
  24. Saha D., and Deng S. Sci. Technol., 2010, 15, (4), 363 [Google Scholar]
  25. Kumar R. M., Sundar J. V., and Subramanian V. Int. J. Hydrogen Energy, 2012, 37, (21), 16070 [Google Scholar]
  26. Li Y., and Yang R. T. V. J. Am. Chem. Soc., 2006, 128, (3), 726 [Google Scholar]
  27. Lueking A. D., and Yang R. T. Appl. Catal. A: Gen., 2004, 265, (2), 259 [Google Scholar]
  28. Li Y., and Yang R. T. J. Am. Chem. Soc., 2006, 128, (25), 8136 [Google Scholar]
  29. Li Y., Liu R. T., Yang C.-j., and Wang Z. Ind. Eng. Chem. Res., 2007, 46, (24), 8277 [Google Scholar]
  30. Stuckert N. R., Wang L., and Yang R. T. Langmuir, 2010, 26, (14), 11963 [Google Scholar]
  31. Luiten-Olieman M. W. J., Winnubst L., Nijmeijer A., Wessling M., and Benes N. E. J. Membrane Sci., 2011, 370, (1–2), 124 [Google Scholar]
  32. Lototskyy M., and Davids M. W. University of the Western Cape, ‘Method for Preparing Hydride-Forming Alloys’, South Africa Appl. 2011/03817 [Google Scholar]
  33. Davids M. W., Lototskyy M., Williams M., Pollet J. M., Sibanyoni B. G., and Linkov V. M. University of the Western Cape, ‘Method for Preparation of Hydride Forming Material on the Basis of Nanostructured Magnesium Hydride’, South Africa Appl. 2012/08851 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error