- Home
- A-Z Publications
- Platinum Metals Review
- Previous Issues
- Volume 35, Issue 4, 1991
Platinum Metals Review - Volume 35, Issue 4, 1991
Volume 35, Issue 4, 1991
-
-
Flow-Through Catalysts for Diesel Engine Emissions Control
Authors: By B. J. Cooper and S. A. Roth
-
-
-
Chemical Reaction Fronts on Platinum Surfaces
Authors: By M. Mundschau and B. RausenbergerIn many chemical reactions catalysed on platinum surfaces it is necessary that two reactants be adsorbed simultaneously. Often one reactant is so strongly adsorbed that it blocks the adsorption of the second; such a reaction is said to be self-poisoned. An example is the oxidation of carbon monoxide, where carbon monoxide forms a strongly adsorbed monolayer which effectively blocks the adsorption and decomposition of oxygen. Photoelectron microscopy shows, however, that oxygen can penetrate the carbon monoxide film at special defect sites, typically inclusions or microdust particles, on the platinum. From these special adsorption sites the oxygen rapidly reacts with neighbouring adsorbed carbon monoxide. Reaction fronts initiate at these sites and rapidly propagate across the surface. A second type of self-poisoning occurs in decomposition reactions for which vacant surface sites are necessary; for instance, the decomposition of nitric oxide in the presence of hydrogen. A monolayer film of nitric oxide poisons the reaction not by blocking the adsorption of hydrogen, but rather by preventing the dissociation of nitric oxide which requires a neighbouring unoccupied surface site. Empty sites are provided on impurity particles which weakly adsorb nitric oxide and initiate reaction fronts. Impurity sites also initiate reaction fronts when graphite is removed from platinum by oxidation. In order to avoid self-poisoning in catalytic reactions, these studies suggest that special adsorption sites should be introduced artificially to provide vacant sites by adsorbing only weakly the reactants causing self-poisoning.
-
-
-
The Plastic Flow of Iridium
Authors: By P. Panfilov, A. Yermakov, V. Dmitriev and N. Timofeev
-
-
-
Recovery of Platinum Group Metals from High Level Radioactive Waste
By By R. P. BushWhen nuclear fuel is irradiated in a power reactor a wide range of chemical elements is created by the fission of uranium and plutonium. These fission products include palladium, rhodium and ruthenium, and could in principle constitute a valuable source of these three metals. Their separation front the fuel during reprocessing operations is, however, a complex mutter. Various processes have been proposed and evaluated, mainly on a laboratory scale. To date none of them has been established as applicable on a commercial scale, but investigations with this aim are continuing in several countries. Even a complete separation of the platinum group metals from other nuclides would yield a radioactive product, because of the presence of active isotopes of the platinum group metals. These would be expected to restrict the practical utilisation of platinum group metals created by nuclear fission, unless an isotope separation technique can be developed, or the metals are stored until the radioactivity has decayed.
-
Volumes & issues
-
Volume 58 (2014)
-
Volume 57 (2013)
-
Volume 56 (2012)
-
Volume 55 (2011)
-
Volume 54 (2010)
-
Volume 53 (2009)
-
Volume 52 (2008)
-
Volume 51 (2007)
-
Volume 50 (2006)
-
Volume 49 (2005)
-
Volume 48 (2004)
-
Volume 47 (2003)
-
Volume 46 (2002)
-
Volume 45 (2001)
-
Volume 44 (2000)
-
Volume 43 (1999)
-
Volume 42 (1998)
-
Volume 41 (1997)
-
Volume 40 (1996)
-
Volume 39 (1995)
-
Volume 38 (1994)
-
Volume 37 (1993)
-
Volume 36 (1992)
-
Volume 35 (1991)
-
Volume 34 (1990)
-
Volume 33 (1989)
-
Volume 32 (1988)
-
Volume 31 (1987)
-
Volume 30 (1986)
-
Volume 29 (1985)
-
Volume 28 (1984)
-
Volume 27 (1983)
-
Volume 26 (1982)
-
Volume 25 (1981)
-
Volume 24 (1980)
-
Volume 23 (1979)
-
Volume 22 (1978)
-
Volume 21 (1977)
-
Volume 20 (1976)
-
Volume 19 (1975)
-
Volume 18 (1974)
-
Volume 17 (1973)
-
Volume 16 (1972)
-
Volume 15 (1971)
-
Volume 14 (1970)
-
Volume 13 (1969)
-
Volume 12 (1968)
-
Volume 11 (1967)
-
Volume 10 (1966)
-
Volume 9 (1965)
-
Volume 8 (1964)
-
Volume 7 (1963)
-
Volume 6 (1962)
-
Volume 5 (1961)
-
Volume 4 (1960)
-
Volume 3 (1959)
-
Volume 2 (1958)
-
Volume 1 (1957)
Most Read This Month
Most Cited Most Cited RSS feed
-
-
Metal-Ligand Exchange Kinetics in Platinum and Ruthenium Complexes
By By Jan Reedijk
-
-
-
The Preparation of Palladium Nanoparticles
By By James Cookson
-
-
-
Diesel Engine Emissions and Their Control
By By Tim Johnson
-
-
-
Recycling the Platinum Group Metals: A European Perspective
By By Christian Hagelüken
-
-
-
Palladium-Based Alloy Membranes for Separation of High Purity Hydrogen from Hydrogen-Containing Gas Mixtures
Authors: By Gennady S. Burkhanov, Nelli B. Gorina, Natalia B. Kolchugina, Nataliya R. Roshan, Dmitry I. Slovetsky and Evgeny M. Chistov
-
-
-
A Healthy Future: Platinum in Medical Applications
Authors: By Alison Cowley and and Brian Woodward*
-
-
-
A Review of the Behaviour of Platinum Group Elements within Natural Magmatic Sulfide Ore Systems
Authors: By D. A. Holwell and I. McDonald
-
-
-
Asymmetric Transfer Hydrogenation in Water with Platinum Group Metal Catalysts
Authors: By Xiaofeng Wu, Chao Wang and Jianliang Xiao
-
-
-
Carbon Nanotubes as Supports for Palladium and Bimetallic Catalysts for Use in Hydrogenation Reactions
Authors: R. S. Oosthuizen and V. O. Nyamori
-
- More Less