- Home
- A-Z Publications
- Platinum Metals Review
- Previous Issues
- Volume 46, Issue 1, 2002
Platinum Metals Review - Volume 46, Issue 1, 2002
Volume 46, Issue 1, 2002
-
-
Catalysis for Low Temperature Fuel Cells
Authors: By T. R. Ralph and M. P. HogarthMuch of the performance still to be gained in proton exchange membrane fuel cells (PEMFCs) in use today is available from improvements to the cathode, traditionally made from unsupported or carbon-supported platinum. The search for improved cathode electrocatalysts has resulted in the development of platinum alloys which if tailored to the desired stack operating conditions can double the activity for oxygen reduction. Recently, advances have been made in cathode design which have raised performance levels in PEMFCs. The new electrocatalysts and cathode designs have increased electrical efficiency and power densities to the PEMFC stack, needed for commercial use. Improvements have also been achieved at the anode, by developments in platinum-ruthenium anodes for carbon monoxide and cell reversal tolerance. In this first paper, new cathode materials and designs are discussed; a second paper to be published in the April issue will look at anode advances.
-
-
-
Comprehensive Modern Electrochemistry
Authors: By J. O’M. Bockris, A. K. N. Reddy, M. Gamboa-Aldeco and L. M. Peter
-
-
-
Electrochemical Destruction of Organic Hazardous Wastes
By By Norvell NelsonThe destruction of hazardous organic waste produced as waste products in chemical processes has become an industry in itself, regulated by environmental agencies and government bodies. The environmentally harmful waste has been incinerated at high temperature with the aim of forming less harmful and less complex compounds, but this may lead to dioxin formation in the presence of chlorine-containing waste. It may also be treated electrochemically to result in carbon dioxide and water. One on-site electrochemical method, described here, which uses platinum-plated titanium electrodes, can treat most organic waste materials very effectively at low temperatures.
-
-
-
Exhaust Emission Catalyst Technology
Authors: By Dirk Bosteels and Robert A. SearlesNew technologies, incorporating the platinum group metals, are available to meet the exhaust emission regulations for cars, light-duty and heavy-duty vehicles and motorcycles being adopted by the European Union for implementation during the new century. These technologies include low light-off catalysts, more thermally-durable catalysts, improved substrate technology, hydrocarbon adsorbers, electrically heated catalysts, DeNOx catalysts and adsorbers, selective catalytic reduction and diesel particulate filters. This large range of technologies will allow exhaust emissions from all engines, both on- and non-road, to be lowered to unprecedented levels. This paper examines the state of emission control technologies currently available for all types of engine.
-
Volumes & issues
-
Volume 58 (2014)
-
Volume 57 (2013)
-
Volume 56 (2012)
-
Volume 55 (2011)
-
Volume 54 (2010)
-
Volume 53 (2009)
-
Volume 52 (2008)
-
Volume 51 (2007)
-
Volume 50 (2006)
-
Volume 49 (2005)
-
Volume 48 (2004)
-
Volume 47 (2003)
-
Volume 46 (2002)
-
Volume 45 (2001)
-
Volume 44 (2000)
-
Volume 43 (1999)
-
Volume 42 (1998)
-
Volume 41 (1997)
-
Volume 40 (1996)
-
Volume 39 (1995)
-
Volume 38 (1994)
-
Volume 37 (1993)
-
Volume 36 (1992)
-
Volume 35 (1991)
-
Volume 34 (1990)
-
Volume 33 (1989)
-
Volume 32 (1988)
-
Volume 31 (1987)
-
Volume 30 (1986)
-
Volume 29 (1985)
-
Volume 28 (1984)
-
Volume 27 (1983)
-
Volume 26 (1982)
-
Volume 25 (1981)
-
Volume 24 (1980)
-
Volume 23 (1979)
-
Volume 22 (1978)
-
Volume 21 (1977)
-
Volume 20 (1976)
-
Volume 19 (1975)
-
Volume 18 (1974)
-
Volume 17 (1973)
-
Volume 16 (1972)
-
Volume 15 (1971)
-
Volume 14 (1970)
-
Volume 13 (1969)
-
Volume 12 (1968)
-
Volume 11 (1967)
-
Volume 10 (1966)
-
Volume 9 (1965)
-
Volume 8 (1964)
-
Volume 7 (1963)
-
Volume 6 (1962)
-
Volume 5 (1961)
-
Volume 4 (1960)
-
Volume 3 (1959)
-
Volume 2 (1958)
-
Volume 1 (1957)
Most Read This Month
Most Cited Most Cited RSS feed
-
-
Metal-Ligand Exchange Kinetics in Platinum and Ruthenium Complexes
By By Jan Reedijk
-
-
-
The Preparation of Palladium Nanoparticles
By By James Cookson
-
-
-
Diesel Engine Emissions and Their Control
By By Tim Johnson
-
-
-
Recycling the Platinum Group Metals: A European Perspective
By By Christian Hagelüken
-
-
-
Palladium-Based Alloy Membranes for Separation of High Purity Hydrogen from Hydrogen-Containing Gas Mixtures
Authors: By Gennady S. Burkhanov, Nelli B. Gorina, Natalia B. Kolchugina, Nataliya R. Roshan, Dmitry I. Slovetsky and Evgeny M. Chistov
-
-
-
A Healthy Future: Platinum in Medical Applications
Authors: By Alison Cowley and and Brian Woodward*
-
-
-
A Review of the Behaviour of Platinum Group Elements within Natural Magmatic Sulfide Ore Systems
Authors: By D. A. Holwell and I. McDonald
-
-
-
Asymmetric Transfer Hydrogenation in Water with Platinum Group Metal Catalysts
Authors: By Xiaofeng Wu, Chao Wang and Jianliang Xiao
-
-
-
Carbon Nanotubes as Supports for Palladium and Bimetallic Catalysts for Use in Hydrogenation Reactions
Authors: R. S. Oosthuizen and V. O. Nyamori
-
- More Less