Skip to content
1887
Volume 46, Issue 1
  • ISSN: 0032-1400

Abstract

Much of the performance still to be gained in proton exchange membrane fuel cells (PEMFCs) in use today is available from improvements to the cathode, traditionally made from unsupported or carbon-supported platinum. The search for improved cathode electrocatalysts has resulted in the development of platinum alloys which if tailored to the desired stack operating conditions can double the activity for oxygen reduction. Recently, advances have been made in cathode design which have raised performance levels in PEMFCs. The new electrocatalysts and cathode designs have increased electrical efficiency and power densities to the PEMFC stack, needed for commercial use. Improvements have also been achieved at the anode, by developments in platinum-ruthenium anodes for carbon monoxide and cell reversal tolerance. In this first paper, new cathode materials and designs are discussed; a second paper to be published in the April issue will look at anode advances.

Loading

Article metrics loading...

/content/journals/10.1595/003214002X461314
2002-01-01
2024-05-18
Loading full text...

Full text loading...

/deliver/fulltext/pmr/46/1/pmr0046-0003.html?itemId=/content/journals/10.1595/003214002X461314&mimeType=html&fmt=ahah

References

  1. Ralph T. R., and Hards G. A.1 and , Chem. lnd., 1998, (9), 337 [Google Scholar]
  2. Springer T. E., Wilson M. S., and Gottesfeld S.2, and , J. Electrochem. Soc,. 1993, 140, 3513 [Google Scholar]
  3. Keck L., Buchanan J. S., and Hards G. A.3, and , U.S. Patent5, 068, 161; 1991 [Google Scholar]
  4. Ralph T. R., Hards G. A., Keating J. E., Campbell S. A., Wilkinson D. P., Davis M., St-Pierre J., and Johnson M. C.4, , , , , , and , J. Electrochem. Soc., 1997, 144, 3845 [Google Scholar]
  5. Raistrick I. D.Van Zee J. W., White R. E., Kinoshita K., and Burney H. S.5 in “Diaphragms, Separators and Ion Exchange Membranes”, eds. , , and , The Electrochemical Society Softbound Proc. Series, Pennington, NJ, 1986, PV 86-13, p. 172 [Google Scholar]
  6. Gottesfeld S., and Zawodzinski T. A.6 and , Adv. Electrochem. Sci. Eng., 1997, 5, 231240 [Google Scholar]
  7. Denton J., Gascoyne J. M., and Thompsett D.7, and , European Patent 73l, 520; 1996 [Google Scholar]
  8. Appleby J., and Foulkes F. R.8 and , “Fuel cell Handbook”, Krieger Publishing Company, Malabar, Florida, 1993, Chapter 12 [Google Scholar]
  9. Ralph T. R., Keating J. E., Collis N. J., and Hyde T. I.9, , and , ETSU Contract Report F/02/00038, 1997 [Google Scholar]
  10. Mukerjee S., and Srinivasan S.10 and , J. Electroanal. Chem., 1993, 357, 201 [Google Scholar]
  11. Gottesfeld S., and Zawodzinski T. A.11 and , Adv. Electrochem. Sci. Eng., 1997, 5, 203217 [Google Scholar]
  12. Buchanan J. S., Hards G. A., Keck L., and Potter R. J.12, , and , in 1992 Fuel Cell Seminar Program & Abstracts, Tuscon, AZ, 1992, p. 536 [Google Scholar]
  13. Kinoshita K.13, J. Electrochem. Soc., 1990, 137, 845 [Google Scholar]
  14. Wilson M. S., Garzon F. H., Sickafus K. E., and Gottesfeld S.14, , and , J. Electrochem. Soc., 1993, 140, 2872 [Google Scholar]
  15. Alonso-Vante N., and Tributsch H.15 and , Nature, 1986, 323, 431 [Google Scholar]
  16. Reeve R. W., Christensen P. A., Hamnett A., Haydock S. A., and Roy S. C.16, , , and , J. Electrochem. Soc., 1996, 145, 3463 [Google Scholar]
  17. Sun G. O., Wang J. T., and Savinell R. F.17, and , J. Appl. Electrochem., 1998, 28, 1087 [Google Scholar]
  18. Cote R., Lalande G., Faubert G., Gauy D., Dodelet J. P., and Denes G.18, , , , and , J. New Mater. Electrochem. Systems, 1998, 1, 7 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/003214002X461314
Loading
/content/journals/10.1595/003214002X461314
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error