- Home
- A-Z Publications
- Platinum Metals Review
- Issue Home
Platinum Metals Review - Current Issue
Volume 58, Issue 2, 2014
-
-
Recent Research and Developments Related to Near-Equiatomic Titanium-Platinum Alloys for High-Temperature Applications
Authors: By Abdul Wadood and Yoko Yamabe-MitaraiTitanium-platinum (Ti50Pt50) (all compositions in at%) alloy exhibits thermoelastic martensitic phase transformation above 1000°C and has potential for high-temperature shape memory material applications. However, as has been previously reported, Ti50Pt50 alloy exhibited a negligible recovery ratio (0–11%) and low strength in martensite and especially in the austenite phase due to low critical stress for slip deformation. In order to improve the high-temperature strength and shape memory properties, the effects of partial substitution of Ti with other Group 4 elements such as zirconium and hafnium and the effect of partial substitution of Pt with other platinum group metals (pgms) such as iridium and ruthenium on the high-temperature mechanical and shape memory properties of Ti50Pt50 alloy were recently investigated. This paper reviews the transformation temperatures and high-temperature mechanical and shape memory properties of recently developed Ti site substituted (Ti,Zr)50Pt50, (Ti,Hf)50Pt50 and Pt site substituted Ti50(Pt,Ru)50 and Ti50(Pt,Ir)50 alloys for high-temperature (~800°C–1100°C) material applications.
-
-
-
Hydrogen and Fuel Cell Technologies at the Hydrogen South Africa (HySA) Systems Competence Centre
The Hydrogen South Africa (HySA) programme is based upon the beneficiation of South Africa’s large platinum group metal (pgm) resources. The present article summarises some of the progress by HySA Systems, one of the three Competence Centres under the HySA Programme, since 2008. Work has been carried out on membrane electrode assembly and stack development for high-temperature proton exchange membrane fuel cells (HT-PEMFCs) for use in combined heat and power (CHP) supplied by natural gas and hydrogen fuelled vehicle (HFV) applications. The emphasis is on improved carbon monoxide tolerance and simplified heat and humidity management, allowing simpler fuel cell systems to be designed. Metal hydrides modified with palladium are being explored as poisoning-tolerant hydrogen storage materials for stationary and special mobile applications, and metal organic frameworks (MOFs) modified with platinum as light-weight hydrogen storage with a high hydrogen storage capacity. Lastly research into hydrogen purification using Pd membrane reactors is focused on membrane support synthesis, hollow fibre seeding and development of the plating procedure.
-
Volumes & issues
-
Volume 58 (2014)
-
Volume 57 (2013)
-
Volume 56 (2012)
-
Volume 55 (2011)
-
Volume 54 (2010)
-
Volume 53 (2009)
-
Volume 52 (2008)
-
Volume 51 (2007)
-
Volume 50 (2006)
-
Volume 49 (2005)
-
Volume 48 (2004)
-
Volume 47 (2003)
-
Volume 46 (2002)
-
Volume 45 (2001)
-
Volume 44 (2000)
-
Volume 43 (1999)
-
Volume 42 (1998)
-
Volume 41 (1997)
-
Volume 40 (1996)
-
Volume 39 (1995)
-
Volume 38 (1994)
-
Volume 37 (1993)
-
Volume 36 (1992)
-
Volume 35 (1991)
-
Volume 34 (1990)
-
Volume 33 (1989)
-
Volume 32 (1988)
-
Volume 31 (1987)
-
Volume 30 (1986)
-
Volume 29 (1985)
-
Volume 28 (1984)
-
Volume 27 (1983)
-
Volume 26 (1982)
-
Volume 25 (1981)
-
Volume 24 (1980)
-
Volume 23 (1979)
-
Volume 22 (1978)
-
Volume 21 (1977)
-
Volume 20 (1976)
-
Volume 19 (1975)
-
Volume 18 (1974)
-
Volume 17 (1973)
-
Volume 16 (1972)
-
Volume 15 (1971)
-
Volume 14 (1970)
-
Volume 13 (1969)
-
Volume 12 (1968)
-
Volume 11 (1967)
-
Volume 10 (1966)
-
Volume 9 (1965)
-
Volume 8 (1964)
-
Volume 7 (1963)
-
Volume 6 (1962)
-
Volume 5 (1961)
-
Volume 4 (1960)
-
Volume 3 (1959)
-
Volume 2 (1958)
-
Volume 1 (1957)