Journal Archive

Platinum Metals Rev., 2011, 55, (2), 124
doi: 10.1595/147106711X555656

The Discoverers of the Rhodium Isotopes

The thirty-eight known rhodium isotopes found between 1934 and 2010


    • By John W. Arblaster
    • Wombourne,
    • West Midlands, UK

E-mail: jwarblaster@yahoo.co.uk


Article Synopsis

This is the fifth in a series of reviews on the circumstances surrounding the discoveries of the isotopes of the six platinum group elements. The first review on platinum isotopes was published in this Journal in October 2000 (1), the second on iridium isotopes in October 2003 (2), the third on osmium isotopes in October 2004 (3) and the fourth on palladium isotopes in April 2006 (4).

Naturally Occurring Rhodium

In 1934, at the University of Cambridge's Cavendish Laboratory, Aston (5) showed by using a mass spectrograph that rhodium appeared to consist of a single nuclide of mass 103 (103Rh). Two years later Sampson and Bleakney (6) at Princeton University, New Jersey, using a similar instrument, suggested the presence of a further isotope of mass 101 (101Rh) with an abundance of 0.08%. Since this isotope had not been discovered at that time, its existence in nature could not be discounted. Then in 1943 Cohen (7) at the University of Minnesota used an improved mass spectrograph to show that the abundance of 101Rh must be less than 0.001%. Finally in 1963 Leipziger (8) at the Sperry Rand Research Center, Sudbury, Massachusetts, used an extremely sensitive double-focusing mass spectrograph to reduce any possible abundance to less than 0.0001%. However by that time 101Rh had been discovered (see
Table I
) and although shown to be radioactive, no evidence was obtained for a long-lived isomer. This demonstrated conclusively that rhodium does in fact exist in nature as a single nuclide: 103Rh.

Artificial Rhodium Isotopes

In 1934, using slow neutron bombardment, Fermi et al. (9) identified two rhodium activities with half-lives of 50 seconds and 5 minutes. A year later the same group (10) refined these half-lives to 44 seconds and 3.9 minutes. These discoveries were said to be ‘non-specific’ since the mass numbers were not determined, although later measurements identified these activities to be the ground state and isomeric state of 104Rh, respectively. In 1940 Nishina et al. (11, 12), using fast neutron bombardment, identified a 34 hour non-specific activity which was later identified as 105Rh. In 1949 Eggen and Pool (13) confirmed the already known nuclide 101Pd and identified the existence of a 4.7 day half-life rhodium daughter product. They did not comment on its mass although the half-life is consistent with the isomeric state of 101Rh. Eggen and Pool also identified a 5 hour half-life activity which was never subsequently confirmed. Activities with half-lives of 4 minutes and 1.1 hours, obtained by fast neutron bombardment, were identified by Pool, Cork and Thornton (14) in 1937 but these also were never confirmed.

Although some of these measured activities represent the first observations of specific nuclides, the exact nuclide mass numbers were not determined and therefore they are not considered to represent actual discoveries. They are however included in the notes to Table I. The first unambiguous identification of a radioactive rhodium isotope was by Crittenden in 1939 (15) who correctly identified both 104Rh and its principal isomer. Nuclides where only the atomic number and atomic mass number were identified are considered as satisfying the discovery criteria.

Discovery Dates

The actual year of discovery is generally considered to be that when the details of the discovery were placed in the public domain, such as manuscript dates or conference report dates. However, complications arise with internal reports which may not be placed in the public domain until several years after the discovery, and in these cases it is considered that the historical date takes precedence over the public domain date. Certain rhodium isotopes were discovered during the highly secretive Plutonium Project of the Second World War, the results of which were not actually published until 1951 (16) although much of the information was made available in 1946 by Siegel (17, 18) and in the 1948 “Table of Isotopes” (19).

Half-Lives

Selected half-lives used in
Table I
are generally those accepted in the revised NUBASE evaluation of nuclear and decay properties in 2003 (20) although literature values are used when the NUBASE data are not available or where they have been superseded by later determinations.

Table I

The Discoverers of the Rhodium Isotopes

Mass numbera Half-life Decay modes Year of discovery Discoverers References Notes
89 psb EC + β+ ? 1994 Rykaczewski et al.
21, 22
90 15 ms EC + β+ 1994 Hencheck et al.
23
A
90m 1.1 s EC + β+ 2000 Stolz et al.
24
A
91 1.5 s EC + β+ 1994 Hencheck et al.
23
B
91m 1.5 s IT 2004 Dean et al.
25
B
92 4.7 s EC + β+ 1994 Hencheck et al.
23
C
92m 0.5 s IT? 2004 Dean et al.
25
C
93 11.9 s EC + β+ 1994 Hencheck et al.
23
D
94 70.6 s EC + β+ 1973 Weiffenbach, Gujrathi and Lee
26
94m 25.8 s EC + β+ 1973 Weiffenbach, Gujrathi and Lee
26
95 5.02 min EC + β+ 1966 Aten and Kapteyn
27
95m 1.96 min IT, EC + β+ 1974 Weiffenbach, Gujrathi and Lee
28
96 9.90 min EC + β+ 1966 Aten and Kapteyn
27
96m 1.51 min IT, EC + β+ 1966 Aten and Kapteyn
27
97 30.7 min EC + β+ 1955 Aten and de Vries-Hamerling
29
97m 46.2 min EC + β+, IT 1971 Lopez, Prestwich and Arad
30
98 8.7 min EC + β+ 1955 Aten and de Vries-Hamerling
29
E
98m 3.6 min EC + β+ 1966 Aten and Kapteyn
31
99 16.1 d EC + β+ 1956 Hisatake, Jones and Kurbatov
32
F
99m 4.7 h EC + β+ 1952 Scoville, Fultz and Pool
33
100 20.8 h EC + β+ 1944 Sullivan, Sleight and Gladrow
34, 35
G
100m 4.6 min IT, EC + β+ 1973 Sieniawski
36
101 3.3 y EC 1956 Hisatake, Jones and Kurbatov
32
F
101m 4.34 d EC, IT 1944 Sullivan, Sleight and Gladrow
34, 37
G
102 207.0 d EC + β+, β 1941 Minakawa
38
102m 3.742 y EC + β+, IT 1962 Born et al.
39
103 Stable 1934 Aston
5
103m 56.114 min IT 1943 (a) Glendenin and Steinberg (b) Flammersfeld (a) 40, 41
(b) 42
H
104 42.3 s β 1939 Crittenden
15
I
104m 4.34 min IT, β 1939 Crittenden
15
I
105 35.36 h β 1944 (a) Sullivan, Sleight and Gladrow (b) Bohr and Hole (a) 34, 43
(b) 44
J
105m 42.9 s IT 1950 Duffield and Langer
45
106 30.1 s β 1943 (a) Glendenin and Steinberg (b) Grummitt and Wilkinson (c) Seelmann-Eggebert (a) 40, 41
(b) 46
(c) 47
K
106m 2.18 h β 1955 Baró, Seelmann-Eggebert and Zabala
48
L
107 21.7 min β 1954 (a) Nervik and Seaborg (b) Baró, Rey and Seelmann-Eggebert (a) 49
(b) 50
M
108 16.8 s β 1955 Baró, Rey and Seelmann-Eggebert
50
N
108m 6.0 min β 1969 Pinston, Schussler and Moussa
51
109 1.33 min β 1969 Wilhelmy et al.
52, 53
110 28.5 s β 1969 (a) Pinston and Schussler (b) Ward et al. (a) 54
(b) 55
110m 3.2 s β 1963 Karras and Kantele
56
111 11 s β 1975 Franz and Herrmann
57
112 3.4 s β 1969 Wilhelmy et al.
52, 53
112m 6.73 s β 1987 Äystö et al.
58
113 2.80 s β 1988 Penttilä et al.
59
114 1.85 s β 1969 Wilhelmy et al.
52, 53
114m 1.85 s β 1987 Äystö et al.
58
115 990 ms β 1987 Äystö et al.
60, 61
116 680 ms β 1987 Äystö et al.
58, 60, 61
116m 570 ms β 1987 Äystö et al.
58, 60, 61
117 394 ms β 1991 Penttilä et al.
62
118 266 ms β 1994 Bernas et al.
63
O
119 171 ms β 1994 Bernas et al.
63
P
120 136 ms β 1994 Bernas et al.
63
Q
121 151 ms β 1994 Bernas et al.
63
P
122 psb β ? 1997 Bernas et al.
64
123 psb β ? 2010 Ohnishi et al.
65
See Figures 1 and 2
124 psb β ? 2010 Ohnishi et al.
65
See Figures 1 and 2
125 psb β ? 2010 Ohnishi et al.
65
See Figures 1 and 2
126 psb β ? 2010 Ohnishi et al.
65
See Figures 1 and 2

[i]
a
m = isomeric state

[ii]
b
ps = particle stable (resistant to proton and neutron decay)

Notes to Table I
A
90Rh and 90mRh
Hencheck et al. (23) only proved that the isotope was particle stable. Stolz et al. (24) in 2000 identified both the ground state and an isomer. The half-life determined by Wefers et al. in 1999 (66) appears to be consistent with the ground state. The discovery by Hencheck et al. is nominally assigned to the ground state.
B
91Rh and 91mRh
Hencheck et al. (23) only proved that the isotope was particle stable. Wefers et al. (66) first determined a half-life in 1999 but Dean et al. (25) remeasured the half-life in 2004 and identified both a ground state and an isomer having identical half-lives within experimental limits. The discovery by Hencheck et al. is nominally assigned to the ground state.
C
92Rh and 92mRh
Hencheck et al. (23) only proved that the isotope was particle stable. Wefers et al. (66) incorrectly determined the half-life in 1999 with more accurate values being determined by both Górska et al. (67) and Stolz et al. (24) in 2000. Dean et al. (25) showed that these determinations were for the ground state and not for the isomeric state which they also identified. The discovery by Hencheck et al. is nominally assigned to the ground state.
D
93Rh
Hencheck et al. (23) only proved that the isotope was particle stable. Wefers et al. in (66) incorrectly measured the half-life in 1999 with more accurate values being obtained by both Górska et al. (67) and Stolz et al. (24) in 2000.
E
98Rh
Aten et al. (68) observed this isotope in 1952 but could not decide if it was 96Rh or 98Rh.
F
99Rh and 101Rh
Farmer (69) identified both of these isotopes in 1955 but could not assign mass numbers.
G
100Rh and 101mRh
For these isotopes the 1944 discovery by Sullivan, Sleight and Gladrow (34) was not made public until its inclusion in the 1948 “Table of Isotopes” (19).
H
103mRh
Although both Glendenin and Steinberg (40) and Flammersfeld (42) discovered the isomer in 1943 the results of Glendenin and Steinberg were not made public until their inclusion in the 1946 table compiled by Siegel (17, 18).
I
104Rh and 104mRh
Both the ground state and isomer were first observed by Fermi et al. (9) in 1934 and by Amaldi et al. (10) in 1935 as non-specific activities. Pontecorvo (70, 71) discussed these activities in detail but assigned them to 105Rh. EC + β+ was also detected as a rare decay mode (0.45% of all decays) in 104Rh by Frevert, Schöneberg and Flammersfeld (72) in 1965.
J
105Rh
For this isotope the 1944 discovery by Sullivan, Sleight and Gladrow (34) was not made public until its inclusion in the 1946 table of Siegel (17, 18). The isotope was first identified by Nishina et al. (11, 12) in 1940 as a non-specific activity.
K
106Rh
The discovery by Glendenin and Steinberg (40) in 1943 was not made public until its inclusion in the 1946 table of Siegel (17, 18) and therefore the discovery of this isotope by both Grummitt and Wilkinson (46) and Seelmann-Eggebert (47) in 1946 are considered to be independent.
L
106mRh
Nervik and Seaborg (49) also observed this isotope in 1955 but tentatively assigned it to 107Rh.
M
107Rh
First observed by Born and Seelmann-Eggebert (73) in 1943 as a non-specific activity and also tentatively identified by Glendenin (74, 75) in 1944.
N
108Rh
Although credited with the discovery, the claim by Baró, Rey and Seelmann-Eggebert (50) is considered to be tentative and a more definite claim to the discovery was made by Baumgärtner, Plata Bedmar and Kindermann (76) in 1957.
O
118Rh
Bernas et al. (63) only confirmed that the isotope was particle stable. The half-life was first determined by Jokinen et al. (77) in 2000.
P
119Rh and 121Rh
Bernas et al. (63) only confirmed that the isotopes were particle stable. The half-lives were first determined by Montes et al. (78) in 2005.
Q
120Rh
Bernas et al. (63) only confirmed that the isotope was particle stable. The half-life was first determined by Walters et al. (79) in 2004.
Fig. 1.

The superconducting ring cyclotron (SRC) in the Radioactive Isotope Beam Factory (RIBF) at the RIKEN Nishina Center for Accelerator-Based Science where the newest isotopes of palladium, rhodium and ruthenium were discovered (65) (Copyright 2010 RIKEN)

 

Fig. 2.

Dr Toshiyuki Kubo (Copyright 2010 RIKEN)

 

Dr Toshiyuki Kubo

Toshiyuki Kubo is the team leader of the Research Group at RIKEN. He was born in Tochigi, Japan, in 1956. He received his BS degree in Physics from The University of Tokyo in 1978, and his PhD degree from the Tokyo Institute of Technology in 1985. He joined RIKEN as an Assistant Research Scientist in 1980, and was promoted to Research Scientist in 1985 and to Senior Research Scientist in 1992. He spent time at the National Superconducting Cyclotron Laboratory of Michigan State University in the USA as a visiting physicist from 1992 to 1994. In 2001, he became the team leader for the in-flight separator, dubbed ‘BigRIPS’, which analyses the fragments produced in the RIBF. He was promoted to Group Director of the Research Instruments Group at the RIKEN Nishina Center in 2007. He is in charge of the design, construction, development and operation of major research instruments, as well as related infrastructure and equipment, at the RIKEN Nishina Center. His current research focuses on the production of rare isotope beams, in-flight separator issues, and the structure and reactions of exotic nuclei.

Some of the Terms Used for This Review
Atomic number The number of protons in the nucleus.
Mass number The combined number of protons and neutrons in the nucleus.
Nuclide and isotope A nuclide is an entity containing a unique number of protons and neutrons in the nucleus. For nuclides of the same element the number of protons remains the same but the number of neutrons may vary. Such nuclides are known collectively as the isotopes of the element. Although the term isotope implies plurality it is sometimes used loosely in place of nuclide.
Isomer/isomeric state An isomer or isomeric state is a high energy state of a nuclide which may decay by isomeric transition (IT) as described in the list of decay modes below, although certain low-lying states may decay independently to other nuclides rather than the ground state.
Half-life The time taken for the activity of a radioactive nuclide to fall to half of its previous value.
Electron volt (eV) The energy acquired by any charged particle carrying a unit (electronic) charge when it falls through a potential of one volt, equivalent to 1.602 × 10−19 J. The more useful unit is the mega (million) electron volt (MeV).
Decay Modes
α Alpha decay is the emission of alpha particles which are 4He nuclei. Thus the atomic number of the daughter nuclide is two lower and the mass number is four lower.
β− Beta or electron decay for neutron-rich nuclides is the emission of an electron (and an anti-neutrino) as a neutron in the nucleus decays to a proton. The mass number of the daughter nuclide remains the same but the atomic number increases by one.
β+ Beta or positron decay for neutron-deficient nuclides is the emission of a positron (and a neutrino) as a proton in the nucleus decays to a neutron. The mass number of the daughter nuclide remains the same but the atomic number decreases by one. However this decay mode cannot occur unless the decay energy exceeds 1.022 MeV (twice the electron mass in energy units). Positron decay is always associated with orbital electron capture (EC).
EC Orbital electron capture in which the nucleus captures an extranuclear (orbital) electron which reacts with a proton to form a neutron and a neutrino, so that, as with positron decay, the mass number of the daughter nuclide remains the same but the atomic number decreases by one.
IT Isomeric transition in which a high energy state of a nuclide (isomeric state or isomer) usually decays by cascade emission of γ (gamma) rays (the highest energy form of electromagnetic radiation) to lower energy levels until the ground state is reached.
p Proton decay in which a proton is emitted from the nucleus so both the atomic number and mass number decrease by one. Such a nuclide is said to be ‘particle unstable’.
n Neutron decay in which a neutron is emitted from the nucleus so the atomic number remains the same but the atomic mass is decreased by one. Such a nuclide is said to be ‘particle unstable’.

[i]
Erratum: In the previous reviews (1–4) the alpha and beta decay modes were described in terms of ‘emittance’. This should read ‘emission’.

References

  1.  J. W. Arblaster, Platinum Metals Rev., 2000, 44, (4), 173 LINK https://www.technology.matthey.com/article/44/4/173-178
  2.  J. W. Arblaster, Platinum Metals Rev., 2003, 47, (4), 167 LINK https://www.technology.matthey.com/article/47/4/167-174
  3.  J. W. Arblaster, Platinum Metals Rev., 2004, 48, (4), 173 LINK https://www.technology.matthey.com/article/48/4/173-179
  4.  J. W. Arblaster, Platinum Metals Rev., 2006, 50, (2), 97 LINK https://www.technology.matthey.com/article/50/2/97-103
  5.  F. W. Aston, Nature, 1934, 133, (3366), 684 LINK http://dx.doi.org/10.1038/133684b0
  6.  M. B. Sampson and W. Bleakney, Phys. Rev., 1936, 50, (8), 732 LINK http://dx.doi.org/10.1103/PhysRev.50.732
  7.  A. A. Cohen, Phys. Rev., 1943, 63, (5–6), 219
  8.  F. D. Leipziger, Appl. Spectrosc., 1963, 17, (6), 158 LINK http://www.opticsinfobase.org/as/abstract.cfm?URI=as-17-6-158
  9.  E. Fermi, E. Amaldi, O. D'Agostino, F. Rasetti and E. Segrè, Proc. R. Soc. Lond. A, 1934, 146, 483 LINK http://dx.doi.org/10.1098/rspa.1934.0168
  10.  E. Amaldi, O. D'Agostino, E. Fermi, B. Pontecorvo, F. Rasetti and E. Segrè, Proc. R. Soc. Lond. A, 1935, 149, 522 LINK http://dx.doi.org/10.1098/rspa.1935.0080
  11.  Y. Nishina, T. Yasaki, K. Kimura and M. Ikawa, Phys. Rev., 1941, 59, (3), 323 LINK http://dx.doi.org/10.1103/PhysRev.59.323.2
  12.  Y. Nishina, T. Yasaki, K. Kimura and M. Ikawa, Phys. Rev., 1941, 59, (8), 677 LINK http://dx.doi.org/10.1103/PhysRev.59.677
  13.  D. T. Eggen and M. L. Pool, Phys. Rev., 1949, 75, (9), 1465
  14.  M. L. Pool, J. M. Cork and R. L. Thornton, Phys. Rev., 1937, 52, (3), 239 LINK http://dx.doi.org/10.1103/PhysRev.52.239
  15.  E. C. Crittenden Jr., Phys. Rev., 1939, 56, (8), 709 LINK http://dx.doi.org/10.1103/PhysRev.56.709
  16.  “Radiochemical Studies: The Fission Products”, eds.C. D. Coryell and N. Sugarman, National Nuclear Energy Series, Plutonium Project Record, Division IV, Vol. 9, McGraw-Hill, New York, USA, 1951, in 3 volumes
  17.  J. M. Siegel, Rev. Mod. Phys., 1946, 18, (4), 513 LINK http://dx.doi.org/10.1103/RevModPhys.18.513
  18.  J. M. Siegel, J. Am. Chem. Soc., 1946, 68, (11), 2411 LINK http://dx.doi.org/10.1021/ja01215a600
  19.  G. T. Seaborg and I. Perlman, Rev. Mod. Phys., 1948, 20, (4), 585 LINK http://dx.doi.org/10.1103/RevModPhys.20.585
  20.  G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra, Nucl. Phys. A, 2003, 729, (1), 3 LINK http://dx.doi.org/10.1016/j.nuclphysa.2003.11.001
  21.  K. Rykaczewski, R. Anne, G. Auger, D. Bazin, C. Borcea, V. Borrel, J. M. Corre, T. Dörfler, A. Fomichov, R. Grzywacz, D. Guillemaud-Mueller, R. Hue, M. Huyse, Z. Janas, H. Keller, M. Lewitowicz, S. Lukyanov, A. C. Mueller, Yu. Penionzhkevich, M. Pfützner, F. Pougheon, M. G. Saint-Laurent, K. Schmidt, W. D. Schmidt-Ott, O. Sorlin, J. Szerypo, O. Tarasov, J. Wauters and J. Zylicz, Phys. Rev. C, 1995, 52, (5), R2310 LINK http://dx.doi.org/10.1103/PhysRevC.52.R2310
  22.  M. Lewitowicz, R. Anne, G. Auger, D. Bazin, C. Borcea, V. Borrel, J. M. Corre, T. Dörfler, A. Fomichov, R. Grzywacz, D. Guillemaud-Mueller, R. Hue, M. Huyse, Z. Janas, H. Keller, S. Lukyanov, A. C. Mueller, Yu. Penionzhkevich, M. Pfützner, F. Pougheon, K. Rykaczewski, M. G. Saint-Laurent, K. Schmidt, W. D. Schmidt-Ott, O. Sorlin, J. Szerypo, O. Tarasov, J. Wauters and J. Zylicz, Nucl. Phys. A, 1995, 588, (1), c197 LINK http://dx.doi.org/10.1016/0375-9474(95)00139-R
  23.  M. Hencheck, R. N. Boyd, M. Hellström, D. J. Morrisey, M. J. Balbes, F. R. Chloupek, M. Fauerbach, C. A. Mitchell, R. Pfaff, C. F. Powell, G. Raimann, B. M. Sherrill, M. Steiner, J. Vandegriff and S. J. Yennello, Phys. Rev. C, 1994, 50, (4), 2219 LINK http://dx.doi.org/10.1103/PhysRevC.50.2219
  24.  A. Stolz, E. Wefers, T. Faestermann, R. Schniedner, K. Sümmerer, J. Friese, H. Geissel, M. Hellström, P. Kienle, H.-J. Körner, M. Münch, G. Münzenberg, Ch. Schlegel, P. Thirolf and H. Weick, ‘Decay Studies of NZ Nuclei From 77Y to 100Sn’, in “Proceedings PINGST2000”, eds.D. Rudolf and M. Hellström, Proceedings of the International Workshop PINGST2000: Selected Topics on N = Z Nuclei, Lund, Sweden, 6th–10th June, 2000, Nuclear Structure Group Lund University, Sweden, 2000, pp. 113–117: http://pingst2000.nuclear.lu.se/proceedings.asp (Accessed on 13th January 2011)
  25.  S. Dean, M. Górska, F. Aksouh, H. de Witte, M. Facina, M. Huyse, O. Ivanov, K. Krouglov, Yu. Kudryavtsev, I. Mukha, D. Smirnov, J.-C. Thomas, K. Van de Vel, J. Van de Walle, P. Van Duppen and J. Van Roosbroeck, Eur. Phys. J. A, 2004, 21, (2), 243 LINK http://dx.doi.org/10.1140/epja/i2003-10204-2
  26.  C. Weiffenbach, S. C. Gujrathi and J. K. P. Lee, Bull. Am. Phys. Soc., 1973, 18, (4), 702
  27.  A. H. W. Aten Jr. and J. C. Kapteyn, Physica, 1967, 33, (3), 705
  28.  C. Weiffenbach, S. C. Gujrathi and J. K. P. Lee, Can. J. Phys., 1975, 53, (2), 101 LINK http://dx.doi.org/10.1139/p75-015
  29.  A. H. W. Aten Jr. and T. de Vries-Hamerling, Physica, 1955, 21, (6–10), 597
  30.  A. M. Lopez, W. V. Prestwich and B. Arad, Can. J. Phys., 1971, 49, (13), 1828 LINK http://dx.doi.org/10.1139/p71-219
  31.  A. H. W. Aten Jr. and J. C. Kapteyn, Physica, 1966, 32, (5), 989
  32.  K. Hisatake, J. T. Jones and J. D. Kurbatov, Bull. Am. Phys. Soc., 1956, 1, (5), 271
  33.  C. L. Scoville, S. C. Fultz and M. L. Pool, Phys. Rev., 1952, 85, (6), 1046 LINK http://dx.doi.org/10.1103/PhysRev.85.1046
  34.  W. H. Sullivan, N. R. Sleight and E. M. Gladrow, National Nuclear Energy Series, Division IV, Plutonium Project Report CC-1493, March 1944
  35.  W. H. Sullivan, N. R. Sleight and E. M. Gladrow, Paper 332: ‘Discovery and Characterization of 21h Rh(100) in Deuteron-Bombarded Ruthenium’, in “Radiochemical Studies: The Fission Products”, eds.C. D. Coryell and N. Sugarman, Vol. 3, National Nuclear Energy Series, Plutonium Project Record, Division IV, Vol. 9, McGraw-Hill, New York, 1951, pp. 1953–1957
  36.  J. Sieniawski, Acta Phys. Pol. B, 1974, 5, (4), 549
  37.  W. H. Sullivan, N. R. Sleight and E. M. Gladrow, Paper 331: ‘Discovery of 5.9d Rh(101) in Deuteron-Bombarded Ruthenium’, in “Radiochemical Studies: The Fission Products”, eds.C. D. Coryell and N. Sugarman, Vol. 3, National Nuclear Energy Series, Plutonium Project Record, Division IV, Vol. 9, McGraw-Hill, New York, 1951, pp. 1949–1952
  38.  O. Minakawa, Phys. Rev., 1941, 60, (9), 689 LINK http://dx.doi.org/10.1103/PhysRev.60.689.2
  39.  P. Born, A. Veefkind, W. H. Elsenaar and J. Blok, Physica, 1963, 29, 535
  40.  L. E. Glendenin and E. P. Steinberg, National Nuclear Energy Series, Division IV, in Plutonium Project Report CC-579, April 1943, p. 11 and in Plutonium Project Report CC-680, May 1943, p. 9
  41.  L. E. Glendenin and E. P. Steinberg, Paper 103: ‘Long-Lived Ruthenium-Rhodium Chains in Fission’, in “Radiochemical Studies: The Fission Products”, eds. C. D. Coryell and N. Sugarman, Vol. 2, National Nuclear Energy Series, Plutonium Project Record, Division IV, Vol. 9, McGraw-Hill, New York, 1951, pp. 793–804
  42.  A. Flammersfeld, Naturwissenschaften, 1944, 32, (1–4), 36 LINK http://dx.doi.org/10.1007/BF01468415
  43.  W. H. Sullivan, N. R. Sleight and E. M. Gladrow, Paper 107: ‘Identification and Mass Assignment of 4.5h Ru105–36.5h Rh105Decay Chain in Neutron- and Deuteron-Bombarded Ruthenium’, in “Radiochemical Studies: The Fission Products”, eds.C. D. Coryell and N. Sugarman, Vol. 2, National Nuclear Energy Series, Plutonium Project Record, Division IV, Vol. 9, McGraw-Hill, New York, 1951, pp. 817–819
  44.  E. Bohr and N. Hole, Ark. Mat. Astron. Fys. A, 1945, 32, (15), 1
  45.  R. B. Duffield and L. M. Langer, Phys. Rev., 1951, 81, (2), 203 LINK http://dx.doi.org/10.1103/PhysRev.81.203
  46.  W. E. Grummitt and G. Wilkinson, Nature, 1946, 158, (4005), 163 LINK http://dx.doi.org/10.1038/158163a0
  47.  W. Seelmann-Eggebert, Naturwissenschaften, 1946, 33, (9), 279 LINK http://dx.doi.org/10.1007/BF01197195
  48.  G. B. Baró, W. Seelmann-Eggebert and I. E. Zabala, Z. Naturforsch., 1955, 10a, 80
  49.  W. E. Nervik and G. T. Seaborg, Phys. Rev., 1955, 97, (4), 1092 LINK http://dx.doi.org/10.1103/PhysRev.97.1092
  50.  G. B. Baró, P. Rey and W. Seelmann-Eggebert, Z. Naturforsch., 1955, 10a, 81
  51.  J. A. Pinston, F. Schussler and A. Moussa, Nucl. Phys. A, 1969, 133, (1), 124 LINK http://dx.doi.org/10.1016/0375-9474(69)90455-2
  52.  J. B. Wilhelmy,‘High-Resolution Gamma and X-Ray Spectroscopy on Unseparated Fission Products’, Report No. UCRL-18978, Lawrence Radiation Laboratory, University of California, Berkeley, USA, 1969
  53.  J. B. Wilhelmy, S. G. Thompson, J. O. Rasmussen, J. T. Routti and J. E. Phillips, in “Nuclear Chemistry Division Annual Report, 1969”, eds. N. Edelstein, D. Hendrie and M. Michel, Report No. UCRL-19530, Lawrence Radiation Laboratory, University of California, Berkeley, USA, 1970, p. 178
  54.  J. A. Pinston and F. Schussler, Nucl. Phys. A, 1970, 144, (1), 42 LINK http://dx.doi.org/10.1016/0375-9474(70)90490-2
  55.  T. E. Ward, K. Takahashi, P. H. Pile and P. K. Kuroda, Nucl. Phys. A, 1970, 154, (3), 665 LINK http://dx.doi.org/10.1016/0375-9474(70)90135-1
  56.  M. Karras and J. Kantele, Phys. Lett., 1963, 6, (1), 98 LINK http://dx.doi.org/10.1016/0031-9163(63)90237-3
  57.  G. Franz and G. Herrmann, Inorg. Nucl. Chem. Lett., 1975, 11, (12), 857 LINK http://dx.doi.org/10.1016/0020-1650(75)80113-9
  58.  J. Äystö, C. N. Davids, J. Hattula, J. Honkanen, K. Honkanen, P. Jauho, R. Julin, S. Juutinen, J. Kumpulainen, T. Lönnroth, A. Pakkanen, A. Passoja, H. Penttilä, P. Taskinen, E. Verho, A. Virtanen and M. Yoshii, Nucl. Phys. A, 1988, 480, (1), 104
  59.  H. Penttilä, P. Taskinen, P. Jauho, V. Koponen, C. N. Davids and J. Äystö, Phys. Rev. C, 1988, 38, (2), 931 LINK http://dx.doi.org/10.1103/PhysRevC.38.931
  60.  J. Äystö, P. Taskinen, M. Yoshii, J. Honkanen, P. Jauho, H. Penttilä and C. N. Davids, Phys. Lett. B, 1988, 201, (2), 211 LINK http://dx.doi.org/10.1016/0370-2693(88)90214-6
  61.  J. Äystö, J. Honkanen, P. Jauho, V. Koponen, H. Penttilä, P. Taskinen, M. Yoshii, C. N. Davids and J. Zylicz, ‘Nuclear Spectroscopy of On-Line Mass Separated Fission Products with Mass Numbers from A = 110 to 120’, 5th International Conference on Nuclei Far from Stability, Rosseau Lake, Ontario, Canada, 14th–19th September, 1987, in “AIP Conference Proceedings”, ed.I. S. Towner, American Institute of Physics, New York, 1988, Vol. 164, Part 1, p. 411 LINK http://dx.doi.org/10.1063/1.37008
  62.  H. Penttilä, P. P. Jauho, J. Äystö, P. Decrock, P. Dendooven, M. Huyse, G. Reusen, P. Van Duppen and J. Wauters, Phys. Rev. C, 1991, 44, (3), R935 LINK http://dx.doi.org/10.1103/PhysRevC.44.R935
  63.  M. Bernas, S. Czajkowski, P. Armbruster, H. Geissel, Ph. Dessagne, C. Donzaud, H.-R. Faust, E. Hanelt, A. Heinz, M. Hesse, C. Kozhuharov, Ch. Miehe, G. Münzenberg, M. Pfützner, C. Röhl, K.-H. Schmidt, W. Schwab, C. Stéphan, K. Sümmerer, L. Tassan-Got and B. Voss, Phys. Lett. B, 1994, 331, (1–2), 19 LINK http://dx.doi.org/10.1016/0370-2693(94)90937-7
  64.  M. Bernas, C. Engelmann, P. Armbruster, S. Czajkowski, F. Ameil, C. Böckstiegel, Ph. Dessagne, C. Donzaud, H. Geissel, A. Heinz, Z. Janas, C. Kozhuharov, Ch. Miehé, G. Münzenberg, M. Pfützner, W. Schwab, C. Stéphan, K. Sümmerer, L. Tassan-Got and B. Voss, Phys. Lett. B, 1997, 415, (2), 111 LINK http://dx.doi.org/10.1016/S0370-2693(97)01216-1
  65.  T. Ohnishi, T. Kubo, K. Kusaka, A. Yoshida, K. Yoshida, M. Ohtake, N. Fukuda, H. Takeda, D. Kameda, K. Tanaka, N. Inabe, Y. Yanagisawa, Y. Gono, H. Watanabe, H. Otsu, H. Baba, T. Ichihara, Y. Yamaguchi, M. Takechi, S. Nishimura, H. Ueno, A. Yoshimi, H. Sakurai, T. Motobayashi, T. Nakao, Y. Mizoi, M. Matsushita, K. Ieki, N. Kobayashi, K. Tanaka, Y. Kawada, N. Tanaka, S. Deguchi, Y. Satou, Y. Kondo, T. Nakamura, K. Yoshinaga, C. Ishii, H. Yoshii, Y. Miyashita, N. Uematsu, Y. Shiraki, T. Sumikama, J. Chiba, E. Ideguchi, A. Saito, T. Yamaguchi, I. Hachiuma, T. Suzuki, T. Moriguchi, A. Ozawa, T. Ohtsubo, M. A. Famiano, H. Geissel, A. S. Nettleton, O. B. Tarasov, D. P. Bazin, B. M. Sherrill, S. L. Manikonda and J. A. Nolen, J. Phys. Soc. Jpn., 2010, 79, (7), 073201 LINK http://dx.doi.org/10.1143/JPSJ.79.073201
  66.  E. Wefers, T. Faestermann, M. Münch, R. Schneider, A. Stolz, K. Sümmerer, J. Friese, H. Geissel, M. Hellström, P. Kienle, H.-J. Körner, G. Münzenberg, C. Schlegel, P. Thirolf, H. Weick and K. Zeitelhack, ‘Halflives of RP-Process Waiting Point Nuclei’, Experimental Nuclear Physics in Europe: ENPE 99: Facing the Next Millennium, Seville, Spain, 21st–26th June, 1999, in “AIP Conference Proceedings”,eds.B. Rubio, W. Gelletly and M. Lozano, American Institute of Physics, New York, USA, 1999, Vol. 495, pp. 375–376 LINK http://dx.doi.org/10.1063/1.1301824
  67.  M. Górska, S. Dean, V. Prasad, N. V. S. A. Andreyev, B. Bruyneel, S. Franchoo, M. Huyse, K. Krouglov, R. Raabe, K. Van de Vel, P. Van Duppen and J. Van Roosbroeck, ‘Beta Decay of Neutron-Deficient Ru and Rh Isotopes’, in “Proceedings PINGST2000”, eds. D. Rudolf and M. Hellström, Proceedings of the International Workshop PINGST2000: Selected Topics on N = Z Nuclei, Lund, Sweden, 6th–10th June, 2000, Nuclear Structure Group Lund University, Sweden, 2000, pp. 108–112: http://pingst2000.nuclear.lu.se/proceedings.asp (Accessed on 13th January 2011)
  68.  A. H. W. Aten Jr., H. Cerfontain, W. Dzcubas and T. Hamerling, Physica, 1952, 18, 972
  69.  D. J. Farmer, Phys. Rev., 1955, 99, (2), 659
  70.  B. Pontecorvo, Nature, 1938, 141, (3574), 785 LINK http://dx.doi.org/10.1038/141785b0
  71.  B. Pontecorvo, Phys. Rev., 1938, 54, (7), 542 LINK http://dx.doi.org/10.1103/PhysRev.54.542
  72.  L. Frevert, R. Schöneberg and A. Flammersfeld, Z. Phys., 1965, 185, (3), 217 LINK http://dx.doi.org/10.1007/BF01380839
  73.  H. J. Born and W. Seelmann-Eggebert, Naturwissenschaften, 1943, 31, (35–36), 420 LINK http://dx.doi.org/10.1007/BF01475563
  74.  L. E. Glendenin, National Nuclear Energy Series, Division IV, Plutonium Project Report M-CN-2184, September 1944, p. 11
  75.  L. E. Glendenin, Paper 115: ‘Short-Lived Ruthenium-Rhodium Decay Chains’, in “Radiochemical Studies: The Fission Products”, eds.C. D. Coryell and N. Sugarman, Vol. 2, National Nuclear Energy Series, Plutonium Project Record, Division IV, Vol. 9, McGraw-Hill, New York, 1951, pp. 849–852
  76.  F. Baumgärtner, A. Plata Bedmar and L. Kindermann, Z. Naturforsch., 1958, 13a, 53
  77.  A. Jokinen, J. C. Wang, J. Äystö, P. Dendooven, S. Nummela, J. Huikari, V. Kolhinen, A. Nieminen, K. Peräjärvi and S. Rinta-Antila, Eur. Phys. J. A, 2000, 9, (1), 9 LINK http://dx.doi.org/10.1007/s100500070049
  78.  F. Montes, A. Estrade, P. T. Hosmer, S. N. Liddick, P. F. Mantica, A. C. Morton, W. F. Mueller, M. Ouellette, E. Pellegrini, P. Santi, H. Schatz, A. Stolz, B. E. Tomlin, O. Arndt, K.-L. Kratz, B. Pfeiffer, P. Reeder, W. B. Walters, A. Aprahamian and A. Wöhr, Phys. Rev. C, 2006, 73, (3), 035801 LINK http://dx.doi.org/10.1103/PhysRevC.73.035801
  79.  W. B. Walters, B. E. Tomlin, P. F. Mantica, B. A. Brown, J. Rikovska Stone, A. D. Davies, A. Estrade, P. T. Hosmer, N. Hoteling, S. N. Liddick, T. J. Mertzimekis, F. Montes, A. C. Morton, W. F. Mueller, M. Ouellette, E. Pellegrini, P. Santi, D. Seweryniak, H. Schatz, J. Shergur and A. Stolz, Phys. Rev. C, 2004, 70, (3), 034314 LINK http://dx.doi.org/10.1103/PhysRevC.70.034314

Supplementary Information

Content for ‘Division IV: The Plutonium Project’ can be accessed via the Hathi Trust Digital Library at: http://catalog.hathitrust.org/Record/001114383 (Accessed on 22nd March 2011)

The Author

John W. Arblaster is interested in the history of science and the evaluation of the thermodynamic and crystallographic properties of the elements. Now retired, he previously worked as a metallurgical chemist in a number of commercial laboratories and was involved in the analysis of a wide range of ferrous and non-ferrous alloys.

Find an article

ArticleSearch