Skip to content
1887
Volume 52, Issue 1
  • ISSN: 0032-1400

Abstract

Loading

Article metrics loading...

/content/journals/10.1595/147106708X256634
2008-01-01
2024-02-21
Loading full text...

Full text loading...

/deliver/fulltext/pmr/52/1/PMR-52-1-Barnard.html?itemId=/content/journals/10.1595/147106708X256634&mimeType=html&fmt=ahah

References

  1. Heck R. F., and Nolley J. P. J. Org. Chem., 1972, 37, (14), 2320 [Google Scholar]
  2. Mizoroki T., Mori K., and Ozaki A. Bull. Chem. Soc. Jpn., 1971, 44, (2), 581 [Google Scholar]
  3. Sonogashira K., Tohda Y., and Hagihara N. Tetrahedron Lett., 1975, 16, (50), 4467 [Google Scholar]
  4. Stille J. K. Angew. Chem. Int. Ed., 1986, 25, (6), 508 [Google Scholar]
  5. Negishi E., King A. O., and Okukado N. J. Org. Chem., 1977, 42, (10), 1821 [Google Scholar]
  6. King A. O., Negishi E., Villani F. J., and Silveira A. J. Org. Chem., 1978, 43, (2), 358 [Google Scholar]
  7. Yamamura M., Moritani I., and Murahashi S.-I. J. Organomet. Chem., 1975, 91, (2), C39 [Google Scholar]
  8. Miyaura N., Yamada K., and Suzuki A. Tetrahedron Lett., 1979, 20, (36), 3437 [Google Scholar]
  9. Miyaura N., and Suzuki A. J. Chem. Soc., Chem. Commun., 1979, 866 [Google Scholar]
  10. Miyaura N., Yanagi T., and Suzuki A. Synth. Commun., 1981, 11, (7), 513 [Google Scholar]
  11. Miyaura N., and Suzuki A. Chem. Rev., 1995, 95, (7), 2457 [Google Scholar]
  12. Whitcombe N. J., Hii K. K. (M.), and Gibson S. E. Tetrahedron, 2001, 57, (35), 7449 [Google Scholar]
  13. Crisp G. T. Chem. Soc. Rev., 1998, 27, 427 [Google Scholar]
  14. Shaw B. L. New J. Chem., 1998, 22, 77 [Google Scholar]
  15. Herrmann W. A., Böhm V. P. W., and Reisinger C.-P. J. Organomet. Chem., 1999, 576, (1–2), 23 [Google Scholar]
  16. Beletskaya I. P., and Cheprakov A. V. Chem. Rev., 2000, 100, (8), 3009 [Google Scholar]
  17. Phan N. T. S., Van Der Sluys M., and Jones C. W. Adv. Synth. Catal., 2006, 348, (6), 609 [Google Scholar]
  18. Amatore C., and Jutand A. Acc. Chem. Res., 2000, 33, (5), 314 [Google Scholar]
  19. de Vries J. G. Can. J. Chem., 2001, 79, (5–6), 1086 [Google Scholar]
  20. Weck M., and Jones C. W. Inorg. Chem., 2007, 46, (6), 1865 [Google Scholar]
  21. Köhler K., Kleist W., and Pröckl S. Inorg. Chem., 2007, 46, (6), 1876 [Google Scholar]
  22. Corbet J.-P., and Mignani G. Chem. Rev., 2006, 106, (7), 2651 [Google Scholar]
  23. Mo J., and Xiao J. Angew. Chem. Int. Ed., 2006, 45, (25), 4152 [Google Scholar]
  24. Mo J., Xu L., and Xiao J. J. Am. Chem. Soc., 2005, 127, (2), 751 [Google Scholar]
  25. Old D. W., Wolfe J. P., and Buchwald S. L. J. Am. Chem. Soc., 1998, 120, (37), 9722 [Google Scholar]
  26. Frisch A. C., and Beller M. Angew. Chem. Int. Ed., 2005, 44, (5), 674 [Google Scholar]
  27. Netherton M. R., Dai C., Neuschütz K., and Fu G. C. J. Am. Chem. Soc., 2001, 123, (41), 10099 [Google Scholar]
  28. Kirchhoff J. H., Dai C., and Fu G. C. Angew. Chem. Int. Ed., 2002, 41, (11), 1945 [Google Scholar]
  29. Ohff M., Ohff A., van der Boom M. E., and Milstein D. J. Am. Chem. Soc., 1997, 119, (48), 11687 [Google Scholar]
  30. Hillier A. C., Grasa G. A., Viciu M. S., Lee H. M., Yang C., and Nolan S. P. J. Organomet. Chem., 2002, 653, (1–2), 69 [Google Scholar]
  31. Portnoy M., Ben-David Y., Rousso I., and Milstein D. Organometallics, 1994, 13, (9), 3465 [Google Scholar]
  32. Littke A. F., and Fu G. C. J. Org. Chem., 1999, 64, (1), 10 [Google Scholar]
  33. Shaughnessy K. H., Kim P., and Hartwig J. F. J. Am. Chem. Soc., 1999, 121, (10), 2123 [Google Scholar]
  34. Littke A. F., and Fu G. C. J. Am. Chem. Soc., 2001, 123, (29), 6989 [Google Scholar]
  35. Julia M., Duteil M., Julia M., and Duteil M. (a) Bull. Soc. Chim. Fr., 1973, (9–10, Pt. 2), 2790; (b) Bull. Soc. Chim. Fr., 1973, (9–10, Pt. 2), 2791 [Google Scholar]
  36. Yin L., and Liebscher J. Chem. Rev., 2007, 107, (1), 133 [Google Scholar]
  37. Astruc D. Inorg. Chem., 2007, 46, (6), 1884 [Google Scholar]
  38. Alonso F., Beletskaya I. P., and Yus M. Tetrahedron, 2005, 61, (50), 11771 [Google Scholar]
  39. Shen W. Tetrahedron Lett., 1997, 38, (32), 5575 [Google Scholar]
  40. Littke A. F., and Fu G. C. Angew. Chem. Int. Ed., 1998, 37, (24), 3387 [Google Scholar]
  41. Littke A. F., Dai C., and Fu G. C. J. Am. Chem. Soc., 2000, 122, (17), 4020 [Google Scholar]
  42. Stambuli J. P., Kuwano R., and Hartwig J. F. Angew. Chem. Int. Ed., 2002, 41, (24), 4746 [Google Scholar]
  43. Andreu M. G., Zapf A., and Beller M. Chem. Commun., 2000, 2475 [Google Scholar]
  44. Buchwald S. L., Old D. W., Wolfe J. P., Palucki M., Kamikawa K., Buchwald S., Old D. W., Wolfe J. P., Palucki M., Kamikawa K., Chieffi A., Sadighi J. P., Singer R. A., and Ahman J. (a) Massachussetts Institute of Technology, U.S. Patent 6,946,560; 2005; (b) Massachussetts Institute of Technology, World Patent Appl. 2000/002,887 [Google Scholar]
  45. Barder T. E., Walker S. D., Martinelli J. R., and Buchwald S. L. J. Am. Chem. Soc., 2005, 127, (13), 4685 [Google Scholar]
  46. Baillie C., Zhang L., and Xiao J. J. Org. Chem., 2004, 69 , (22), 7779 [Google Scholar]
  47. Colacot T. J., and Shea H. A. Org. Lett., 2004, 6, (21), 3731 [Google Scholar]
  48. Netherton M. R., and Fu G. C. Angew. Chem. Int. Ed., 2002, 41, (20), 3910 [Google Scholar]
  49. Beller M., Ehrentraut A., Ehrentraut W. H., Ehrentraut T. E., Fuhrmann C., and Zapf A. U.S. Patent Appl. 2004/0,068,131 [Google Scholar]
  50. Zapf A., and Beller M. Chem. Commun., 2005, 431 [Google Scholar]
  51. Zapf A., Ehrentraut A., and Beller M. Angew. Chem. Int. Ed., 2000, 39, (22), 4153 [Google Scholar]
  52. Tewari A., Hein M., Zapf A., and Beller M. Synthesis, 2004, 935 [Google Scholar]
  53. Bedford R. B., Hazelwood S. L., and Limmert M. E. Chem. Commun., 2002, 2610 [Google Scholar]
  54. Guram A. S., King A. O., Allen J. G., Wang X., Schenkel L. B., Chan J., Bunel E. E., Faul M. M., Larsen R. D., Martinelli M. J., and Reider P. J. Org. Lett., 2006, 8, (9), 1787 [Google Scholar]
  55. Billingsley K. L., Anderson K. W., and Buchwald S. L. Angew. Chem. Int. Ed., 2006, 45, (21), 3484 [Google Scholar]
  56. Kudo N., Perseghini M., and Fu G. C. Angew. Chem. Int. Ed., 2006, 45, (8), 1282 [Google Scholar]
  57. Herrmann W. A., Elison M., Fischer J., Köcher C., and Artus G. R. J. Angew. Chem. Int. Ed., 1995, 34, (21), 2371 [Google Scholar]
  58. Milstein D., and Stille J. K. J. Am. Chem. Soc., 1978, 100, (11), 3636 [Google Scholar]
  59. Farina V., Roth G. C., and Liebeskind L. S. “Advances in Metal-Organic Chemistry”, ed. Elsevier, 1996, Vol. 5, pp. 153 [Google Scholar]
  60. Littke A. F., Schwarz L., and Fu G. C. J. Am. Chem. Soc., 2002, 124, (22), 6343 [Google Scholar]
  61. Grasa G. A., and Nolan S. P. Org. Lett., 2001, 3, (1), 119 [Google Scholar]
  62. Bedford R. B., Cazin C. S. J., and Hazelwood S. L. Chem. Commun., 2002, 2608 [Google Scholar]
  63. Hatanaka Y., and Hiyama T. J. Org. Chem., 1988, 53, (4), 918 [Google Scholar]
  64. Hatanaka Y., and Hiyama T. J. Org. Chem., 1989, 54, (2), 268 [Google Scholar]
  65. Hatanaka Y., and Hiyama T. Synlett., 1991, 845 [Google Scholar]
  66. Gouda K., Hagiwara E., Hatanaka Y., and Hiyama T. J. Org. Chem., 1996, 61, (21), 7232 [Google Scholar]
  67. Alacid E., and Nájera C. Adv. Synth. Catal., 2006, 348, (7–8), 945 [Google Scholar]
  68. Alacid E., and Nájera C. Adv. Synth. Catal., 2006, 348, (15), 2085 [Google Scholar]
  69. Dai C., and Fu G. C. J. Am. Chem. Soc., 2001, 123, (12), 2719 [Google Scholar]
  70. Milne J. E., and Buchwald S. L. J. Am. Chem. Soc., 2004, 126, (40), 13028 [Google Scholar]
  71. Hayashi T., Konishi M., Kobori Y., Kumada M., Higuchi T., and Hirotsu K. J. Am. Chem. Soc., 1984, 106, (1), 158 [Google Scholar]
  72. Murahashi S., Yamamura M., Yanagisawa K., Mita N., and Kondo K. J. Org. Chem., 1979, 44, (14), 2408 [Google Scholar]
  73. Katayama T., and Umeno M. Chem. Lett., 1991, 20, (11), 2073 [Google Scholar]
  74. Huang J., and Nolan S. P. J. Am. Chem. Soc., 1999, 121, (42), 9889 [Google Scholar]
  75. Gelman D., and Buchwald S. L. Angew. Chem. Int. Ed., 2003, 42, (48), 5993 [Google Scholar]
  76. Liang Y., Xie Y.-X., and Li J.-H. J. Org. Chem., 2006, 71 , (1), 379 [Google Scholar]
  77. Chinchilla R., and Nájera C. Chem. Rev., 2007, 107, (3), 874 [Google Scholar]
  78. Littke A. F., and Fu G. C. ‘Palladium-Catalyzed Coupling Reactions of Aryl Chlorides’, Angew. Chem. Int. Ed., 2002, 41 , (22), 4176 [Google Scholar]
  79. Tsuji J. “Palladium Reagents and Catalysts: New Perspectives for the 21st Century”, John Wiley and Sons, Ltd., Chichester, 2004 [Google Scholar]
  80. de Meijere A., and Diederich F. “Metal-catalyzed Cross-coupling Reactions”, 2nd Edn., eds. Wiley-VCH, Weinheim, 2004 [Google Scholar]
  81. Farina V., Krishnamurthy V., and Scott W. J. “The Stille Reaction”, John Wiley and Sons, Inc., New York, 1998 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/147106708X256634
Loading
/content/journals/10.1595/147106708X256634
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error