- Home
- A-Z Publications
- Platinum Metals Review
- Previous Issues
- Volume 52, Issue 1, 2008
Platinum Metals Review - Volume 52, Issue 1, 2008
Volume 52, Issue 1, 2008
-
-
Metal-Ligand Exchange Kinetics in Platinum and Ruthenium Complexes
More LessMetal coordination compounds with ‘slow’metal-ligand exchange rates, comparable to those of cell division processes, often appear to be highly active in killing cancer cell lines. This is particularly marked in platinum and ruthenium complexes. Classical examples such as cisplatin, as well as very recent examples from the author’s and other work, will be discussed in detail, and in the context of the current knowledge of the mechanism of antitumour action. It is shown that even though much is known about the molecular mechanism of action of cisplatin, many challenging questions are left for future research. For the ruthenium anticancer drugs molecular mechanistic studies are only at the beginning. Mechanistic studies on both platinum and ruthenium compounds have, however, opened many new avenues of research that may lead to the design of completely new drugs.
-
-
-
Diesel Engine Emissions and Their Control
More LessThis review covers recent developments in regulations to limit diesel emissions, engine technology, and remediation of nitrogen oxides (NOx) and particulate matter (PM). The geographical focus of regulatory development is now the European Union (EU), where Euro V and Euro VI regulations for light-duty engines have been finalised for implementation in 2009 and 2014, respectively. The regulations are much more loosely drawn than those for the U.S., but options exist for adapting European vehicles to the U.S. market. Europe is just beginning to address heavy-duty regulations for 2013 and beyond. Engine technology is making very impressive progress, with clean combustion strategies in active development, mainly for U.S. light-duty application. Work with heavy-duty research engines is more focused on traditional approaches, and will provide numerous engine/aftertreatment options for complying with the stringent U.S. 2010 regulations. NOx control is focusing on selective catalytic reduction (SCR) for diverse applications. Zeolite catalysts will be the mainstay of this technology for Japan and the U.S., and perhaps even for some Euro V-compliant applications. The emphases are on low-temperature operation, secondary emissions and system optimisation. Lean NOx traps (LNTs) are effective up to about 60 to 70% deNOx efficiency, and are being considered for light-duty applications. There is growing interest in supplementing LNT performance with integrated SCR, which utilises ammonia generated in the LNT during rich regenerations. Diesel particulate filter (DPF) technology is at a stage of optimisation and cost reduction. Very sophisticated management strategies are being utilised, which open up options for the use of new filter materials and alternative system architectures. Issues with secondary emissions are emerging and are being addressed.
-
-
-
Palladium-Catalysed C–C Coupling: Then and Now
More LessSynthetic procedures for the manufacture of complex drug molecules have changed continually over the years as methodology has improved. However, a step change in efficiency has been achieved by switching from a linear pattern of steps (often more than ten) to a different strategy: the parallel synthesis of key precursor components and then linking them together at a late stage in the process. This has only been possible due to the advances in coupling chemistry that have occurred over the last thirty years, many of them related to the use of palladium catalysis. This article sets out to describe some of the early work in palladium-catalysed C–C bond formation and how the methodologies have changed due to recent developments.
-
-
-
Building a Thermodynamic Database for Platinum-Based Superalloys: Part III
Authors: By J. Preußner, S. N. Prins, M. Wenderoth, R. Völkl and U. GlatzelWork is being done at Mintek, the University of Leeds and the University of Bayreuth to build up a platinum-aluminium-chromium-ruthenium (Pt-Al-Cr-Ru) database for the prediction of phase diagrams for further alloy development by obtaining good thermodynamic descriptions of all of the possible phases in the system. Binary descriptions were combined, allowing extrapolation into the ternary systems, and experimental phase equilibrium data were compared with calculated results. Part I of this series of papers (1) addressed the Pt-Al-Ru system, and Part II (2) the Pt-Cr-Ru system. This final paper (Part III) deals with progress towards a platinum-aluminium-chromium-nickel (Pt-Al-Cr-Ni) database at the University of Bayreuth, using thermodynamic calculations from first principles to deal with the problem of sparse data. The Pt-Al-Cr-Ru and Pt-Al-Cr-Ni databases will eventually be merged to give a Pt-Al-Cr-Ni-Ru database.
-
Volumes & issues
-
Volume 58 (2014)
-
Volume 57 (2013)
-
Volume 56 (2012)
-
Volume 55 (2011)
-
Volume 54 (2010)
-
Volume 53 (2009)
-
Volume 52 (2008)
-
Volume 51 (2007)
-
Volume 50 (2006)
-
Volume 49 (2005)
-
Volume 48 (2004)
-
Volume 47 (2003)
-
Volume 46 (2002)
-
Volume 45 (2001)
-
Volume 44 (2000)
-
Volume 43 (1999)
-
Volume 42 (1998)
-
Volume 41 (1997)
-
Volume 40 (1996)
-
Volume 39 (1995)
-
Volume 38 (1994)
-
Volume 37 (1993)
-
Volume 36 (1992)
-
Volume 35 (1991)
-
Volume 34 (1990)
-
Volume 33 (1989)
-
Volume 32 (1988)
-
Volume 31 (1987)
-
Volume 30 (1986)
-
Volume 29 (1985)
-
Volume 28 (1984)
-
Volume 27 (1983)
-
Volume 26 (1982)
-
Volume 25 (1981)
-
Volume 24 (1980)
-
Volume 23 (1979)
-
Volume 22 (1978)
-
Volume 21 (1977)
-
Volume 20 (1976)
-
Volume 19 (1975)
-
Volume 18 (1974)
-
Volume 17 (1973)
-
Volume 16 (1972)
-
Volume 15 (1971)
-
Volume 14 (1970)
-
Volume 13 (1969)
-
Volume 12 (1968)
-
Volume 11 (1967)
-
Volume 10 (1966)
-
Volume 9 (1965)
-
Volume 8 (1964)
-
Volume 7 (1963)
-
Volume 6 (1962)
-
Volume 5 (1961)
-
Volume 4 (1960)
-
Volume 3 (1959)
-
Volume 2 (1958)
-
Volume 1 (1957)