- Home
- A-Z Publications
- Platinum Metals Review
- Previous Issues
- Volume 25, Issue 1, 1981
Platinum Metals Review - Volume 25, Issue 1, 1981
Volume 25, Issue 1, 1981
-
-
Thick Film Platinum Resistance Temperature Detectors
By By W. D. J. EvansThe development of a range of thick film platinum resistance temperature detectors is described and the method of manufacture of a cylindrical version by a highly automated route is outlined. These novel detectors comprise a film of platinum bonded to an inert ceramic substrate and protected from the environment by a ceramic glaze and the advanced version of this series shows stability in sealed probes to maximum rated temperatures as well as improved thermal stability relative to previous versions.
-
-
-
Control of Nitrogen Oxide Emissions from Automobile Engines
Authors: By B. Harrison, By B. J. Cooper and A. J. J. WilkinsRegulations requiring strict control of nitrogen oxide emissions from automobiles come into force in 1981 in the United States. This has necessitated the development of new catalyst systems that are capable of controlling nitrogen oxide as well as hydrocarbon and carbon monoxide emissions from spark ignition engines. These devices are known as three-way catalysts. Johnson Matthey have developed catalyst systems based upon platinum and rhodium to meet the requirements and these have been certified for use on 1981 model year vehicles by a number of automobile manufacturers.
-
-
-
The Resistance to Fatigue Crack Growth of the Platinum Metals
By By Professor Markus O. SpeidelThe effect of the cyclic stress intensity on the growth rates of fatigue cracks in the platinum metals in air can be predicted on the basis of established correlation equations. These suggest an inverse relationship between the growth rate of fatigue cracks in a material and its elastic modulus, and this has been experimentally confirmed for platinum and palladium and for a 30 per cent rhodium-platinum alloy. It may therefore be expected that ruthenium and rhodium have a higher resistance to fatigue crack growth than most other metals. Osmium and iridium may have absolutely the highest resistance to fatigue crack growth of all metallic materials. The effect of an evacuated test environment is also considered.
-
-
-
Electroplating the Platinum Metals
By By Peta D. BuchananThe successful development of gold and silver plating in 1840 led to a number of scientists turning their attention to the electrodeposition of platinum and palladium, but before commercially satisfactory processes could be established they met with considerable difficulties because of the insolubility of the anodes and of the complex nature of the chemical compounds of these metals.
-
Volumes & issues
-
Volume 58 (2014)
-
Volume 57 (2013)
-
Volume 56 (2012)
-
Volume 55 (2011)
-
Volume 54 (2010)
-
Volume 53 (2009)
-
Volume 52 (2008)
-
Volume 51 (2007)
-
Volume 50 (2006)
-
Volume 49 (2005)
-
Volume 48 (2004)
-
Volume 47 (2003)
-
Volume 46 (2002)
-
Volume 45 (2001)
-
Volume 44 (2000)
-
Volume 43 (1999)
-
Volume 42 (1998)
-
Volume 41 (1997)
-
Volume 40 (1996)
-
Volume 39 (1995)
-
Volume 38 (1994)
-
Volume 37 (1993)
-
Volume 36 (1992)
-
Volume 35 (1991)
-
Volume 34 (1990)
-
Volume 33 (1989)
-
Volume 32 (1988)
-
Volume 31 (1987)
-
Volume 30 (1986)
-
Volume 29 (1985)
-
Volume 28 (1984)
-
Volume 27 (1983)
-
Volume 26 (1982)
-
Volume 25 (1981)
-
Volume 24 (1980)
-
Volume 23 (1979)
-
Volume 22 (1978)
-
Volume 21 (1977)
-
Volume 20 (1976)
-
Volume 19 (1975)
-
Volume 18 (1974)
-
Volume 17 (1973)
-
Volume 16 (1972)
-
Volume 15 (1971)
-
Volume 14 (1970)
-
Volume 13 (1969)
-
Volume 12 (1968)
-
Volume 11 (1967)
-
Volume 10 (1966)
-
Volume 9 (1965)
-
Volume 8 (1964)
-
Volume 7 (1963)
-
Volume 6 (1962)
-
Volume 5 (1961)
-
Volume 4 (1960)
-
Volume 3 (1959)
-
Volume 2 (1958)
-
Volume 1 (1957)
Most Read This Month
Most Cited Most Cited RSS feed
-
-
Metal-Ligand Exchange Kinetics in Platinum and Ruthenium Complexes
By By Jan Reedijk
-
-
-
The Preparation of Palladium Nanoparticles
By By James Cookson
-
-
-
Diesel Engine Emissions and Their Control
By By Tim Johnson
-
-
-
Recycling the Platinum Group Metals: A European Perspective
By By Christian Hagelüken
-
-
-
Palladium-Based Alloy Membranes for Separation of High Purity Hydrogen from Hydrogen-Containing Gas Mixtures
Authors: By Gennady S. Burkhanov, Nelli B. Gorina, Natalia B. Kolchugina, Nataliya R. Roshan, Dmitry I. Slovetsky and Evgeny M. Chistov
-
-
-
A Healthy Future: Platinum in Medical Applications
Authors: By Alison Cowley and and Brian Woodward*
-
-
-
A Review of the Behaviour of Platinum Group Elements within Natural Magmatic Sulfide Ore Systems
Authors: By D. A. Holwell and I. McDonald
-
-
-
Asymmetric Transfer Hydrogenation in Water with Platinum Group Metal Catalysts
Authors: By Xiaofeng Wu, Chao Wang and Jianliang Xiao
-
-
-
Carbon Nanotubes as Supports for Palladium and Bimetallic Catalysts for Use in Hydrogenation Reactions
Authors: R. S. Oosthuizen and V. O. Nyamori
-
- More Less