- Home
- A-Z Publications
- Platinum Metals Review
- Previous Issues
- Volume 32, Issue 1, 1988
Platinum Metals Review - Volume 32, Issue 1, 1988
Volume 32, Issue 1, 1988
-
-
Space Station Resistojets
More LessResistojets for space station auxiliary propulsion require both long life and multipropellant capability, and platinum dispersion strengthened with yttria and zirconia has been studied for possible use as a resistojet material. A series of propellant compatibility tests has been conducted, and the results are presented. Generally, on the basis of mass loss, there were no compatibility problems in any of the environments considered. Microscopy showed that the effect of the propellants on the surface of the platinum varied significantly; however material stability, as measured by grain growth, did not appear to be a major problem.
-
-
-
The Chemical Characterisation of Rhodium-Platinum Surfaces
Authors: By A. R. McCabe and G. D. W. SmithDuring the manufacture of nitric acid, rhodium-platinum gauzes are used to catalyse the oxidation of ammonia, an operation that results in a major reconstruction of the alloy surface. In this study, the effect of pretreatments, similar to those employed to prepare the catalysts for commercial use, have been examined to determine both the chemical and the physical effects on the surface. A successful pretreatment is shown to produce a generally clean, chemically receptive surface containing reactive crystal orientation sites. Additionally, the nature of the surface during catalyst operation has been investigated using a rapid quench facility in a miniature reactor. It has been established that, during catalyst operation, the surface of the catalyst is metallic, and not covered by an oxide layer as previously thought.
-
-
-
The “Uphill” Diffusion of Hydrogen
Authors: By F. A. Lewis, K. Kandasamy and B. BaranowskiCertain unexpected effects observed during developments and reductions of pressures of hydrogen gas inside tubular membranes of palladium alloys now seem to be self-consistently interpretable in terms of lattice-strain-induced temporary “uphill” hydrogen diffusion processes.
-
Volumes & issues
-
Volume 58 (2014)
-
Volume 57 (2013)
-
Volume 56 (2012)
-
Volume 55 (2011)
-
Volume 54 (2010)
-
Volume 53 (2009)
-
Volume 52 (2008)
-
Volume 51 (2007)
-
Volume 50 (2006)
-
Volume 49 (2005)
-
Volume 48 (2004)
-
Volume 47 (2003)
-
Volume 46 (2002)
-
Volume 45 (2001)
-
Volume 44 (2000)
-
Volume 43 (1999)
-
Volume 42 (1998)
-
Volume 41 (1997)
-
Volume 40 (1996)
-
Volume 39 (1995)
-
Volume 38 (1994)
-
Volume 37 (1993)
-
Volume 36 (1992)
-
Volume 35 (1991)
-
Volume 34 (1990)
-
Volume 33 (1989)
-
Volume 32 (1988)
-
Volume 31 (1987)
-
Volume 30 (1986)
-
Volume 29 (1985)
-
Volume 28 (1984)
-
Volume 27 (1983)
-
Volume 26 (1982)
-
Volume 25 (1981)
-
Volume 24 (1980)
-
Volume 23 (1979)
-
Volume 22 (1978)
-
Volume 21 (1977)
-
Volume 20 (1976)
-
Volume 19 (1975)
-
Volume 18 (1974)
-
Volume 17 (1973)
-
Volume 16 (1972)
-
Volume 15 (1971)
-
Volume 14 (1970)
-
Volume 13 (1969)
-
Volume 12 (1968)
-
Volume 11 (1967)
-
Volume 10 (1966)
-
Volume 9 (1965)
-
Volume 8 (1964)
-
Volume 7 (1963)
-
Volume 6 (1962)
-
Volume 5 (1961)
-
Volume 4 (1960)
-
Volume 3 (1959)
-
Volume 2 (1958)
-
Volume 1 (1957)