- Home
- A-Z Publications
- Platinum Metals Review
- Previous Issues
- Volume 50, Issue 4, 2006
Platinum Metals Review - Volume 50, Issue 4, 2006
Volume 50, Issue 4, 2006
-
-
High-Temperature Mechanical Properties of the Platinum Group Metals
Authors: By R. Weiland, D. F. Lupton, B. Fischer, J. Merker, C. Scheckenbach and J. WitteIn order to provide reliable data on the high-temperature deformation behaviour of iridium, the high-temperature material properties such as stress-rupture strength, high-temperature tensile strength and creep behaviour are determined for pure iridium in the temperature range 1650–2300°C. Analyses of the stress-rupture curves and the creep behaviour of pure iridium samples at 1650°C, 1800°C and 2000°C imply that the fracture behaviour is controlled by two different fracture mechanisms depending on test conditions, in particular applied load and test temperature. The existence of the different fracture modes is confirmed by SEM examination of the fracture surface of samples ruptured at high temperatures. Anomalies in the creep curves and the results of high-temperature tensile tests indicate that dynamic recrystallisation plays an important role in the high-temperature deformation behaviour of pure iridium.
-
-
-
Rhodium and Iridium in Organometallic Catalysis
By Robert H. CrabtreeWork to extend the catalytic chemistry of rhodium and iridium, with particular emphasis on the great versatility of the former, is outlined and summarised. Topics addressed include the design of chelating N-heterocyclic carbene ligands, and the cyclisation of alkynes using rhodium and iridium phosphine compounds as reagents or catalysts. The work was carried out by Ph.D. students sponsored through the prize awarded by Johnson Matthey to the winner of their Rhodium Bicentenary Competition.
-
-
-
CAPoC7: The State of the Art in Automotive Pollution Control
Authors: Reviewed by Jillian Bailie, Peter Hinde and Valérie Houel
-
-
-
The Platinised Platinum Interface Under Cathodic Polarisation
By By Jacques SimonetUnder the use of super-dry dimethylformamide containing tetraalkylammonium salts (TAAX with X = Cl, Br, I, ClO, BF4, etc.) platinised platinum layers may exhibit a reversible charging process that occurs at quite negative potentials (more negative than –2.2 V vs. saturated calomel electrode (SCE)). The mode of reactivity of the electrolyte and the reversibility of the platinum charging of platinised layers (whatever the type of conducting substrate – gold and glassy carbon can also be used successfully) are discussed in terms of the nature of the salt. After cathodic charge and oxidation by air of samples removed from the cell, a huge change of morphology of the original platinised layer was observed. During repeated reduction/oxidation stages, the original amorphous platinised layer was progressively transformed, with a noticeable swelling of the original layer. This transformation, based essentially on cathodic swelling due to the peculiar reactivity of platinum in the presence of bulky tetraalkylammonium salts, is the precondition for a new kind of platinum interface.
-
-
-
Reliability of Platinum-Based Thermocouples
By By Roy RushforthA series of articles in this Journal by Wilkinson on platinum-based thermocouples and their use (1–4) addressed most of the potential problems and performance-limiting factors. The author referred to the possibility of deterioration of thermocouple performance through contamination. This article expands on this, demonstrating that the prevailing atmosphere in which the thermocouple is operating can have a profound effect on its life and accuracy.
-
Volumes & issues
-
Volume 58 (2014)
-
Volume 57 (2013)
-
Volume 56 (2012)
-
Volume 55 (2011)
-
Volume 54 (2010)
-
Volume 53 (2009)
-
Volume 52 (2008)
-
Volume 51 (2007)
-
Volume 50 (2006)
-
Volume 49 (2005)
-
Volume 48 (2004)
-
Volume 47 (2003)
-
Volume 46 (2002)
-
Volume 45 (2001)
-
Volume 44 (2000)
-
Volume 43 (1999)
-
Volume 42 (1998)
-
Volume 41 (1997)
-
Volume 40 (1996)
-
Volume 39 (1995)
-
Volume 38 (1994)
-
Volume 37 (1993)
-
Volume 36 (1992)
-
Volume 35 (1991)
-
Volume 34 (1990)
-
Volume 33 (1989)
-
Volume 32 (1988)
-
Volume 31 (1987)
-
Volume 30 (1986)
-
Volume 29 (1985)
-
Volume 28 (1984)
-
Volume 27 (1983)
-
Volume 26 (1982)
-
Volume 25 (1981)
-
Volume 24 (1980)
-
Volume 23 (1979)
-
Volume 22 (1978)
-
Volume 21 (1977)
-
Volume 20 (1976)
-
Volume 19 (1975)
-
Volume 18 (1974)
-
Volume 17 (1973)
-
Volume 16 (1972)
-
Volume 15 (1971)
-
Volume 14 (1970)
-
Volume 13 (1969)
-
Volume 12 (1968)
-
Volume 11 (1967)
-
Volume 10 (1966)
-
Volume 9 (1965)
-
Volume 8 (1964)
-
Volume 7 (1963)
-
Volume 6 (1962)
-
Volume 5 (1961)
-
Volume 4 (1960)
-
Volume 3 (1959)
-
Volume 2 (1958)
-
Volume 1 (1957)
Most Read This Month
Most Cited Most Cited RSS feed
-
-
Metal-Ligand Exchange Kinetics in Platinum and Ruthenium Complexes
By By Jan Reedijk
-
-
-
The Preparation of Palladium Nanoparticles
By By James Cookson
-
-
-
Diesel Engine Emissions and Their Control
By By Tim Johnson
-
-
-
Recycling the Platinum Group Metals: A European Perspective
By By Christian Hagelüken
-
-
-
Palladium-Based Alloy Membranes for Separation of High Purity Hydrogen from Hydrogen-Containing Gas Mixtures
Authors: By Gennady S. Burkhanov, Nelli B. Gorina, Natalia B. Kolchugina, Nataliya R. Roshan, Dmitry I. Slovetsky and Evgeny M. Chistov
-
-
-
A Healthy Future: Platinum in Medical Applications
Authors: By Alison Cowley and and Brian Woodward*
-
-
-
A Review of the Behaviour of Platinum Group Elements within Natural Magmatic Sulfide Ore Systems
Authors: By D. A. Holwell and I. McDonald
-
-
-
Asymmetric Transfer Hydrogenation in Water with Platinum Group Metal Catalysts
Authors: By Xiaofeng Wu, Chao Wang and Jianliang Xiao
-
-
-
Carbon Nanotubes as Supports for Palladium and Bimetallic Catalysts for Use in Hydrogenation Reactions
Authors: R. S. Oosthuizen and V. O. Nyamori
-
- More Less