Skip to content
1887
Volume 60, Issue 2
  • ISSN: 2056-5135

Abstract

High-surface area γ-alumina is industrially used as a catalyst support. Catalytically active elements are doped onto the support, where they can bind to AlO, AlO or AlO sites on the surface. Pretreating the surface with alkaline earth oxides can alter the availability of these surface sites, hence affecting the catalytic activity. The surface binding sites of strontium oxide (SrO) on γ-alumina were previously unknown. Direct 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) could not detect AlO sites at 9.4 T, so 1H–27Al cross-polarisation (CP) MAS NMR was used to preferentially select the surface environment signals. We directly observed the three surface environments on dehydrated γ-alumina as a function of SrO impregnation up to 4 wt% SrO. We found that Sr2+ preferentially binds to AlO and AlO surface sites. 1H MAS NMR revealed SrO impregnation causes a reduction in the terminal (−0.3 ppm) and bridging (2.2 ppm) hydroxyl environments, as well as the promotion of a new peak in between these sites, at 0.5 ppm. By using 1H–27Al CP/MAS NMR the relative proportions of surface sites on γ-alumina can be determined, allowing an optimal level of SrO doping that can saturate all the AlO sites. Importantly, this provides a method of subsequently depositing catalytically active elements on just the AlO or AlO sites, which can provide a different catalytic activity or stability compared to the AlO binding site.

Loading

Article metrics loading...

/content/journals/10.1595/205651316X690943
2016-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/60/2/JMTR-60-2-Barrow.html?itemId=/content/journals/10.1595/205651316X690943&mimeType=html&fmt=ahah

References

  1. Wefers K., and Misra C. “Oxides and Hydroxides of Aluminum”, Alcoa Technical Paper No. 19, Aluminum Company of America, USA, 1987 LINK https://www.alcoa.com/global/en/innovation/papers_patents/pdf/TP19_Wefers.pdf [Google Scholar]
  2. Busca G., and Jentoft F. C. ‘Structural, Surface, and Catalytic Properties of Aluminas’ in “Advances in Catalysis”, ed. Volume 57, Academic Press, USA, 2014, pp. 319404 [Google Scholar]
  3. Trueba M., and Trasatti S. P. Eur. J. Inorg. Chem., 2005, (17), 3393 LINK http://dx.doi.org/10.1002/ejic.200500348 [Google Scholar]
  4. Hargreaves J. S. J., and Munnoch A. L. Catal. Sci. Technol., 2013, 3, (5), 1165 LINK http://dx.doi.org/10.1039/c3cy20866d [Google Scholar]
  5. Keyvanloo K., Horton J. B., Hecker W. C., and Argyle M. D. Catal. Sci. Technol., 2014, 4, (12), 4289 LINK http://dx.doi.org/10.1039/c4cy00510d [Google Scholar]
  6. Lucarelli C., Albonetti S., Vaccari A., Resini C., Taillades G., Roziere J., Liew K.-E., Ohnesorge A., Wolff C., Gabellini I., and Wails D. Catal. Today, 2011, 175, (1), 504 LINK http://dx.doi.org/10.1016/j.cattod.2011.02.056 [Google Scholar]
  7. Novák V., Kočí P., Marek M., Štěpánek F., Blanco-García P., and Jones G. Catal. Today, 2012, 188, (1), 62 LINK http://dx.doi.org/10.1016/j.cattod.2012.03.049 [Google Scholar]
  8. Chen H.-Y., and Chang H.-L. Johnson Matthey Technol. Rev., 2015, 59, (1), 64 LINK http://www.technology.matthey.com/article/59/1/64-67/ [Google Scholar]
  9. Kašpar J., Fornasiero P., and Hickey N. Catal. Today, 2003, 77, (4), 419 LINK http://dx.doi.org/10.1016/S0920-5861(02)00384-X [Google Scholar]
  10. Yi C.-W., Kwak J. H., Peden C. H. F., Wang C, and Szanyi J. J. Phys. Chem. C, 2007, 111, (41), 14942 LINK http://dx.doi.org/10.1021/jp0763376 [Google Scholar]
  11. Verrier C., Kwak J. H., Kim D. H., Peden C. H. F., and Szanyi J. Catal. Today, 2008, 136, (1–2), 121 LINK http://dx.doi.org/10.1016/j.cattod.2007.12.138 [Google Scholar]
  12. Taoufik M., Szeto K. C., Merle N., Rosal I. D., Maron L., Trébosc J., Tricot G., Gauvin R. M., and Delevoye L. Chem. Eur. J., 2014, 20, (14), 4038 LINK http://dx.doi.org/10.1002/chem.201304883 [Google Scholar]
  13. Vega A. J., and Wasylishen R. E. ‘Quadrupolar Nuclei in Solids’, in “eMagRes”, ed. John Wiley & Sons, Inc, Hoboken, New Jersey, USA, 2010 LINK http://dx.doi.org/10.1002/9780470034590.emrstm0431.pub2 [Google Scholar]
  14. Smith M. E., and van Eck E. R. H. Prog. Nucl. Magn. Reson. Spectrosc., 1999, 34, (2), 159 LINK http://dx.doi.org/10.1016/s0079-6565(98)00028-4 [Google Scholar]
  15. Nortier P., Fourre P., Saad A. B. M., Saur O., and Lavalley J. C. Appl. Catal., 1990, 61, (1), 141 LINK http://dx.doi.org/10.1016/S0166-9834(00)82140-5 [Google Scholar]
  16. Huggins B. A., and Ellis P. D. J. Am. Chem. Soc., 1992, 114, (6), 2098 LINK http://dx.doi.org/10.1021/ ja00032a025 [Google Scholar]
  17. Fitzgerald J. J., Piedra G., Dec S. F., Seger M., and Maciel G. E. J. Am. Chem. Soc., 1997, 119, (33), 7832 LINK http://dx.doi.org/10.1021/ja970788u [Google Scholar]
  18. Morris H. D., and Ellis P. D. J. Am. Chem. Soc., 1989, 111, (16), 6045 LINK http://dx.doi.org/10.1021/ja00198a012 [Google Scholar]
  19. Coster D. , Blumenfeld A. L., and Fripiat J. J. J. Phys. Chem., 1994, 98, (24), 6201 LINK http://dx.doi.org/10.1021/j100075a024 [Google Scholar]
  20. Vitzthum V., Miéville P., Carnevale D., Caporini M. A., Gajan D., Copéret C., Lelli M., Zagdoun A., Rossini A. J., Lesage A., Emsley L., and Bodenhausen G. Chem. Commun., 2012, 48, (14), 1988 LINK http://dx.doi.org/10.1039/c2cc15905h [Google Scholar]
  21. Lee D., Duong N. T., Lafon O., and De Paëpe G. J. Phys. Chem. C, 2014, 118, (43), 25065 LINK http://dx.doi.org/10.1021/jp508009x [Google Scholar]
  22. Wischert R., Florian P., Copéret C., Massiot D., and Sautet P. J. Phys. Chem. C, 2014, 118, (28), 15292 LINK http://dx.doi.org/10.1021/jp503277m [Google Scholar]
  23. Rozita Y., Brydson R., Comyn T. P., Scott A. J., Hammond C., Brown A., Chauruka S., Hassanpour A., Young N. P., Kirkland A. I., Sawada H., and Smith R. I. ChemCatChem, 2013, 5, (9), 2695 LINK http://dx.doi.org/10.1002/cctc.201200880 [Google Scholar]
  24. Rinaldi R., Fujiwara F. Y., Hölderich W., and Schuchardt U. J. Catal., 2006, 244, (1), 92 LINK http://dx.doi.org/10.1016/j.jcat.2006.08.024 [Google Scholar]
  25. Wagner G. W., and Fry R. A. J. Phys. Chem. C, 2009, 113, (30), 13352 LINK http://dx.doi.org/10.1021/jp902474z [Google Scholar]
  26. Kwak J. H., Hu J., Mei D., Yi C.-W., Kim D. H., Peden C. H. F., Allard L. F., and Szanyi J. Science, 2009, 325, (5948), 1670 LINK http://dx.doi.org/10.1126/science.1176745 [Google Scholar]
  27. Kwak J. H., Hu J. Z., Kim D. H., Szanyi J., and Peden C. H. F. J. Catal., 2007, 251, (1), 189 LINK http://dx.doi.org/10.1016/j.jcat.2007.06.029 [Google Scholar]
  28. Peri J. B. J. Phys. Chem., 1965, 69, (1), 220 LINK http://dx.doi.org/10.1021/j100885a033 [Google Scholar]
  29. Knözinger H., and Ratnasamy P. Catal. Rev.: Sci. Eng., 1978, 17, (1), 31 LINK http://dx.doi.org/10.1080/03602457808080878 [Google Scholar]
  30. Tsyganenko A. A., and Mardilovich P. P. J. Chem. Soc., Faraday Trans., 1996, 92, (23), 4843 LINK http://dx.doi.org/10.1039/ft9969204843 [Google Scholar]
  31. Digne M., Sautet P., Raybaud P., Euzen P., and Toulhoat H. J. Catal., 2004, 226, (1), 54 LINK http://dx.doi.org/10.1016/j.jcat.2004.04.020 [Google Scholar]
  32. Ferreira A. R., Küçükbenli E., de Gironcoli S., Souza W. F., Chiaro S. S. X., Konstantinova E., and Leitão A. A. Chem. Phys., 2013, 423, 62 LINK http://dx.doi.org/10.1016/j.chemphys.2013.06.024 [Google Scholar]
  33. Decanio E. C. , Edwards J. C., and Bruno J. W. J. Catal., 1994, 148, (1), 76 LINK http://dx.doi.org/10.1006/jcat.1994.1187 [Google Scholar]
  34. Deng F., Wang G., Du Y., Ye C., Kong Y., and Li X. Solid State Nucl. Magn. Reson., 1997, 7, (4), 281 LINK http://dx.doi.org/10.1016/S0926-2040(96)01281-7 [Google Scholar]
  35. Delgado M., Delbecq F., Santini C. C., Lefebvre F., Norsic S., Putaj P., Sautet P., and Basset J.-M. J. Phys. Chem. C, 2012, 116, (1), 834 LINK http://dx.doi.org/10.1021/jp208709x [Google Scholar]
  36. Huittinen N., Sarv P., and Lehto J. J. Colloid Interface Sci., 2011, 361, (1), 252 LINK http://dx.doi.org/10.1016/j.jcis.2011.05.055 [Google Scholar]
  37. Hahn E. L., and Maxwell D. E. Phys. Rev., 1951, 84, (6), 1246 LINK http://dx.doi.org/10.1103/PhysRev.84.1246 [Google Scholar]
  38. Massiot D., Bessada C., Coutures J. P., and Taulelle F. J. Magn. Reson., 1990, 90, (2), 231 LINK http://dx.doi.org/10.1016/0022-2364(90)90130-2 [Google Scholar]
  39. Hartmann S. R., and Hahn E. L. Phys. Rev., 1962, 128, (5), 2042 LINK http://dx.doi.org/10.1103/PhysRev.128.2042 [Google Scholar]
  40. Vega A. J. J. Magn. Reson., 1992, 96, (1), 50 LINK http://dx.doi.org/10.1016/0022-2364(92)90287-h [Google Scholar]
  41. Hayashi S. Solid State Nucl. Magn. Reson., 1994, 3, (2), 93 LINK http://dx.doi.org/10.1016/0926-2040(94)90027-2 [Google Scholar]
  42. Ashbrook S. E., and Wimperis S. J. Chem. Phys., 2004, 120, (6), 2719 LINK http://dx.doi.org/10.1063/1.1638995 [Google Scholar]
  43. Chupas P. J., and Grey C. P. J. Catal., 2004, 224, (1), 69 LINK http://dx.doi.org/10.1016/j.jcat.2004.02.013 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651316X690943
Loading
/content/journals/10.1595/205651316X690943
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error