Skip to content
Volume 62, Issue 2
  • ISSN: 2056-5135


The status, concepts and challenges toward catalysts free of platinum group metal (pgm) elements for proton-exchange membrane fuel cells (PEMFC) are reviewed. Due to the limited reserves of noble metals in the Earth’s crust, a major challenge for the worldwide development of PEMFC technology is to replace Pt with pgm-free catalysts with sufficient activity and stability. The priority target is the substitution of cathode catalysts (oxygen reduction) that account for more than 80% of pgms in current PEMFCs. Regarding hydrogen oxidation at the anode, ultralow Pt content electrodes have demonstrated good performance, but alternative non-pgm anode catalysts are desirable to increase fuel cell robustness, decrease the H purity requirements and ease the transition from H derived from natural gas to H produced from water and renewable energy sources.


Article metrics loading...

Loading full text...

Full text loading...



  1. Wagner F. T., Lakshmanan B., and Mathias M. F. J. Phys. Chem. Lett., 2010, 1, (14), 2204 LINK [Google Scholar]
  2. Thomas C. E. Int. J. Hydrogen Energy, 2009, 34, (15), 6005 LINK [Google Scholar]
  3. Garback J., Ramsden T., Wipke K., Sprik S., and Kurtz J. ‘Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project’, Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles, National Renewable Energy Laboratory of the US Department of Transportation and US Department of Energy, Washington, DC, USA, 10th–11th December, 2009 LINK [Google Scholar]
  4. “Global Transport Scenarios 2050”, World Energy Council, London, UK, 2011, 76 pp LINK [Google Scholar]
  5. Gröger O., Gasteiger H. A., and Suchsland J.-P. J. Electrochem. Soc., 2015, 162, (14), A2605 LINK [Google Scholar]
  6. Ellamla H. R., Staffell I., Bujlo P., Pollet B. G., and Pasupathi S. J. Power Sources, 2015, 293, 312 LINK [Google Scholar]
  7. James B. D., Huya-Kouadio J. M., Houchins C., and DeSantis D. A. “Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2016 Update”, Rev. 3, Strategic Analysis Inc, Arlington, USA, January, 2017, 244 pp LINK [Google Scholar]
  8. “Fuel Cell Technologies Office: Multi-Year Research, Development, and Demonstration Plan: Planned Program Activities for 2011-2020”, Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, 2013 LINK [Google Scholar]
  9. Wu G., and Zelenay P. Acc. Chem. Res., 2013, 46, (8), 1878 LINK [Google Scholar]
  10. Jaouen F., Dodelet J.-P., and Zhang J. ‘Heat-Treated Transition Metal-N x C y Electrocatalysts for the O2 Reduction in Acid PEM Fuel Cells’, in “Non-Noble Metal Fuel Cell Catalysts”, eds. Chen Z., Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2014, pp. 29118 LINK [Google Scholar]
  11. Serov A., and Kwak C. Appl. Catal. B: Environ., 2009, 90, (3–4), 313 LINK [Google Scholar]
  12. Brouzgou A., Song S. Q., and Tsiakaras P. Appl. Catal. B: Environ., 2012, 127, 371 LINK [Google Scholar]
  13. Gasteiger H. A., Panels J. E., and Yan S. G. J. Power Sources, 2004, 127, (1–2), 162 LINK [Google Scholar]
  14. Chen C., Kang Y., Huo Z., Zhu Z., Huang W., Xin H. L., Snyder J. D., Li D., Herron J. A., Mavrikakis M., Chi M., More K. L., Li Y., Markovic N. M., Somorjai G. A., Yang P., and Stamenkovic V. R. Science, 2014, 343, (6177), 1339 LINK [Google Scholar]
  15. Li M., Zhao Z., Cheng T., Fortunelli A., Chen C.-Y., Yu R., Zhang Q., Gu L., Merinov B. V., Lin Z., Zhu E., Yu T., Jia Q., Guo J., Zhang L., Goddard W. A. III, Huang Y., and Duan X. Science, 2016, 354, (6318), 1414 LINK [Google Scholar]
  16. Banham D., and Ye S. ACS Energy Lett., 2017, 2, (3), 629 LINK [Google Scholar]
  17. Kongkanand A., and Mathias M. F. J. Phys. Chem. Lett., 2016, 7, (7), 1127 LINK [Google Scholar]
  18. Nonoyama N., Okazaki S., Weber A. Z., Ikogi Y., and Yoshida T. J. Electrochem. Soc., 2011, 158, (4), B416 LINK [Google Scholar]
  19. Chen Z., Higgins D., Yu A., Zhang L., and Zhang J. Energy Environ. Sci., 2011, 4, (9), 3167 LINK [Google Scholar]
  20. Jaouen F., Proietti E., Lefèvre M., Chenitz R., Dodelet J.-P., Wu G., Chung H. T., Johnston C. M., and Zelenay P. Energy Environ. Sci., 2011, 4, (1), 114 LINK [Google Scholar]
  21. Fei H., Dong J., Arellano-Jiménez M. J., Ye G., Kim N. D., Samuel E. L. G., Peng Z., Zhu Z., Qin F., Bao J., Yacaman M. J., Ajayan P. M., Chen D., and Tour J. M. Nature Commun., 2015, 6, 8668 LINK [Google Scholar]
  22. Chung H. T., Cullen D. A., Higgins D., Sneed B. T., Holby E. F., More K. L., and Zelenay P. Science, 2017, 357, (6350), 479 LINK [Google Scholar]
  23. Zitolo A., Goellner V., Armel V., Sougrati M.-T., Mineva T., Stievano L., Fonda E., and Jaouen F. Nature Mater., 2015, 14, (9), 937 LINK [Google Scholar]
  24. Ramaswamy N., Tylus U., Jia Q., and Mukerjee S. J. Am. Chem. Soc., 2013, 135, (41), 15443 LINK [Google Scholar]
  25. Zitolo A., Ranjbar-Sahraie N., Mineva T., Li J., Jia Q., Stamatin S., Harrington G. F., Lyth S. M., Krtil P., Mukerjee S., Fonda E., and Jaouen F. Nature Commun., 2017, 8, 957 LINK [Google Scholar]
  26. “2017 Annual Work Plan and Budget”, Fuel Cells and Hydrogen 2 Joint Undertaking (FCH2JU), Brussels, Belgium, 2017 LINK [Google Scholar]
  27. ‘Fuel Cell Technologies Office Annual FOA’, Funding Number DE-FOA-0001647, Fuel Cells Technology Office, Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC, USA, 18th November, 2016 LINK [Google Scholar]
  28. ‘Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Review of the List of Critical Raw Materials for the EU and the Implementation of the Raw Materials Initiative’, COM/2014/0297 final, 26th May, 2014 LINK
  29. Ballard Power Systems Inc, ‘Ballard to Offer World’s First PEM Fuel Cell Product Using Non Precious Metal Catalyst’, PR Newswire, New York, USA, 12th September, 2017 LINK [Google Scholar]
  30. Lefèvre M., Proietti E., Jaouen F., and Dodelet J.-P. Science, 2009, 324, (5923), 71 LINK [Google Scholar]
  31. Proietti E., Jaouen F., Lefèvre M., Larouche N., Tian J., Herranz J., and Dodelet J.-P. Nature Commun., 2011, 2, 416 LINK [Google Scholar]
  32. Holby E. F., Wu G., Zelenay P., and Taylor C. D. J. Phys. Chem. C, 2014, 118, (26), 14388 LINK [Google Scholar]
  33. Liang W., Chen J., Liu Y., and Chen S. ACS Catal., 2014, 4, (11), 4170 LINK [Google Scholar]
  34. Shui J., Chen C., Grabstanowicz L., Zhao D., and Liu D.-J. Proc. Natl. Acad. Sci. USA, 2015, 112, (34), 10629 LINK [Google Scholar]
  35. Nabae Y., Nagata S., Hayakawa T., Niwa H., Harada Y., Oshima M., Isoda A., Matsunaga A., Tanaka K., and Aoki T. Sci. Rep., 2016, 6, 23276 LINK [Google Scholar]
  36. Jaouen F., Goellner V., Lefèvre M., Herranz J., Proietti E., and Dodelet J. P. Electrochim. Acta, 2013, 87, 619 LINK [Google Scholar]
  37. Cheon J. Y., Kim T., Choi Y., Jeong H. Y., Kim M. G., Sa Y. J., Kim J., Lee Z., Yang T.-H., Kwon K., Terasaki O., Park G.-G., Adzic R. R., and Joo S. H. Sci. Rep., 2013, 3, 2715 LINK [Google Scholar]
  38. Serov A., Artyushkova K., Niangar E., Wang C., Dale N., Jaouen F., Sougrati M.-T., Jia Q., Mukerjee S., and Atanassov P. Nano Energy, 2015, 16, 293 LINK [Google Scholar]
  39. Armel V., Hindocha S., Salles F., Bennett S., Jones D., and Jaouen F. J. Am. Chem. Soc., 2017, 139, (1), 453 LINK [Google Scholar]
  40. Gasteiger H. A., Kocha S. S., Sompalli B., and Wagner F. T. Appl. Catal. B: Environ., 2005, 56, (1–2), 9 LINK [Google Scholar]
  41. Morozan A., and Jaouen F. Energy Environ. Sci., 2012, 5, (11), 9269 LINK [Google Scholar]
  42. Zhao D., Shui J.-L., Grabstanowicz L. R., Chen C., Commet S. M., Xu T., Lu J., and Liu D.-J. Adv. Mater., 2014, 26, (7), 1093 LINK [Google Scholar]
  43. Su P., Xiao H., Zhao J., Yao Y., Shao Z., Li C., and Yang Q. Chem. Sci., 2013, 4, (7), 2941 LINK [Google Scholar]
  44. Jaouen F., Lefèvre M., Dodelet J.-P., and Cai M. J. Phys. Chem. B, 2006, 110, (11), 5553 LINK [Google Scholar]
  45. Anibal J., Romero H. G., Leonard N. D., Gumeci C., Halevi B., and Barton S. C. Appl. Catal. B: Environ., 2016, 198, 32 LINK [Google Scholar]
  46. Herrmann I., Kramm U. I., Fiechter S., and Bogdanoff P. Electrochim. Acta, 2009, 54, (18), 4275 LINK [Google Scholar]
  47. Stariha S., Artyushkova K., Serov A., and Atanassov P. Int. J. Hydrogen Energy, 2015, 40, (42), 14676 LINK [Google Scholar]
  48. Wu G., More K. L., Johnston C. M., and Zelenay P. Science, 2011, 332, (6028), 443 LINK [Google Scholar]
  49. Wu G., Artyushkova K., Ferrandon M., Kropf A. J., Myers D., and Zelenay P. ECS Trans., 2009, 25, (1), 1299 LINK [Google Scholar]
  50. Malko D., Lopes T., Symianakis E., and Kucernak A. R. J. Mater. Chem. A, 2016, 4, (1), 142 LINK [Google Scholar]
  51. Ralph T. R., and Hogarth M. P. Platinum Metals Rev., 2002, 46, (3), 117 LINK [Google Scholar]
  52. Varnell J. A., Tse E. C. M., Schulz C. E., Fister T. T., Haasch R. T., Timoshenko J., Frenkel A. I., and Gewirth A. A. Nature Commun., 2016, 7, 12582 LINK [Google Scholar]
  53. Huan T. N., Jane R. T., Benayad A., Guetaz L., Tran P. D., and Artero V. Energy Environ. Sci., 2016, 9, (3), 940 LINK [Google Scholar]
  54. Calle-Vallejo F., Tymoczko J., Colic V., Vu Q. H., Pohl M. D., Morgenstern K., Loffreda D., Sautet P., Schuhmann W., and Bandarenka A. S. Science, 2015, 350, (6257), 185 LINK [Google Scholar]
  55. Calle-Vallejo F., Pohl M. D., Reinisch D., Loffreda D., Sautet P., and Bandarenka A. S. Chem. Sci., 2017, 8, (3), 2283 LINK [Google Scholar]
  56. Brüller S., Liang H.-W., Kramm U. I., Krumpfer J. W., Feng X., and Müllen K. J. Mater. Chem. A, 2015, 3, (47), 23799 LINK [Google Scholar]
  57. Serov A., Robson M. H., Smolnik M., and Atanassov P. Electrochim. Acta, 2012, 80, 213 LINK [Google Scholar]
  58. Cheon J. Y., Kim J. H., Kim J. H., Goddeti K. C., Park J. Y., and Joo S. H. J. Am. Chem. Soc., 2014, 136, (25), 8875 LINK [Google Scholar]
  59. Kramm U. I., Abs-Wurmbach I., Herrmann-Geppert I., Radnik J., Fiechter S., and Bogdanoff P. J. Electrochem. Soc., 2011, 158, (1), B69 LINK [Google Scholar]
  60. Workman M. J., Serov A., Tsui L., Atanassov P., and Artyushkova K. ACS Energy Lett., 2017, 2, (7), 1489 LINK [Google Scholar]
  61. Charreteur F., Jaouen F., Ruggeri S., and Dodelet J.-P. Electrochim. Acta, 2008, 53, (6), 2925 LINK [Google Scholar]
  62. Jaouen F., Herranz J., Lefèvre M., Dodelet J.-P., Kramm U. I., Herrmann I., Bogdanoff P., Maruyama J., Nagaoka T., Garsuch A., Dahn J. R., Olson T., Pylypenko S., Atanassov P., and Ustinov E. A. ACS Appl. Mater. Interfaces., 2009, 1, (8), 1623 LINK [Google Scholar]
  63. Gumeci C., Leonard N., Liu Y., McKinney S., Halevi B., and Barton S. C. J. Mater. Chem. A, 2015, 3, (43), 21494 LINK [Google Scholar]
  64. Kramm U. I., Herrmann I., Fiechter S., Zehl G., Zizak I., Abs-Wurmbach I., Radnik J., Dorbandt I., and Bogdanoff P. ECS Trans., 2009, 25, (1), 659 LINK [Google Scholar]
  65. Goellner V., Armel V., Zitolo A., Fonda E., and Jaouen F. J. Electrochem. Soc., 2015, 162, (6), H403 LINK [Google Scholar]
  66. Jaouen F., and Dodelet J.-P. Electrochim. Acta, 2007, 52, (19), 5975 LINK [Google Scholar]
  67. Kramm U. I., Herranz J., Larouche N., Arruda T. M., Lefèvre M., Jaouen F., Bogdanoff P., Fiechter S., Abs-Wurmbach I., Mukerjee S., and Dodelet J.-P. Phys. Chem. Chem. Phys., 2012, 14, (33), 11673 LINK [Google Scholar]
  68. Thorum M. S., Hankett J. M., and Gewirth A. A. J. Phys. Chem. Lett., 2011, 2, (4), 295 LINK [Google Scholar]
  69. Zhang Q., Mamtani K., Jain D., Ozkan U., and Asthagiri A. J. Phys. Chem. C, 2016, 120, (28), 15173 LINK [Google Scholar]
  70. Gupta S., Fierro C., and Yeager E. J. Electroanal. Chem. Interfacial Electrochem., 1991, 306, (1–2), 239 LINK [Google Scholar]
  71. Li W., Yu A., Higgins D. C., Llanos B. G., and Chen Z. J. Am. Chem. Soc., 2010, 132, (48), 17056 LINK [Google Scholar]
  72. Sahraie N. R., Kramm U. I., Steinberg J., Zhang Y., Thomas A., Reier T., Paraknowitsch J.-P., and Strasser P. Nature Commun., 2015, 6, 8618 LINK [Google Scholar]
  73. Malko D., Kucernak A., and Lopes T. Nature Commun., 2016, 7, 13285 LINK [Google Scholar]
  74. Kneebone J. L., Daifuku S. L., Kehl J. A., Wu G., Chung H. T., Hu M. Y., Alp E. E., More K. L., Zelenay P., Holby E. F., and Neidig M. L. J. Phys. Chem. C, 2017, 121, (30), 16283 LINK [Google Scholar]
  75. Zalitis C. M., Sharman J., Wright E., and Kucernak A. R. Electrochim. Acta, 2015, 176, 763 LINK [Google Scholar]
  76. Sheng W., Bivens A. P., Myint M., Zhuang Z., Forest R. V., Fang Q., Chen J. G., and Yan Y. Energy Environ. Sci., 2014, 7, (5), 1719 LINK [Google Scholar]
  77. Palanker V. Sh., Gajyev R. A., and Sokolsky D. V. Electrochim. Acta, 1977, 22, (2), 133 LINK [Google Scholar]
  78. Nagai M., Yoshida M., and Tominaga H. Electrochim. Acta, 2007, 52, (17), 5430 LINK [Google Scholar]
  79. Izhar S., Yoshida M., and Nagai M. Electrochim. Acta, 2009, 54, (4), 1255 LINK [Google Scholar]
  80. McIntyre D. R., Burstein G. T., and Vossen A. J. Power Sources, 2002, 107, (1), 67 LINK [Google Scholar]
  81. Izhar S., and Nagai M. J. Power Sources, 2008, 182, (1), 52 LINK [Google Scholar]
  82. Pandey K., Islam S. T. A., Happe T., and Armstrong F. A. Proc. Natl. Acad. Sci. USA, 2017, 114, (15), 3843 LINK [Google Scholar]
  83. Berggren G., Adamska A., Lambertz C., Simmons T. R., Esselborn J., Atta M., Gambarelli S., Mouesca J.-M., Reijerse E., Lubitz W., Happe T., Artero V., and Fontecave M. Nature, 2013, 499, (7456), 66 LINK [Google Scholar]
  84. Hidalgo R., Ash P. A., Healy A. J., and Vincent K. A. Angew. Chem. Int. Ed., 2015, 54, (24), 7110 LINK [Google Scholar]
  85. Wilson A. D., Newell R. H., McNevin M. J., Muckerman J. T., DuBois M. R., and DuBois D. L. J. Am. Chem. Soc., 2006, 128, (1), 358 LINK [Google Scholar]
  86. Curtis C. J., Miedaner A., Ciancanelli R., Ellis W. W., Noll B. C., DuBois M. R., and DuBois D. L. Inorg. Chem., 2003, 42, (1), 216 LINK [Google Scholar]
  87. DuBois D. L. Inorg. Chem., 2014, 53, (8), 3935 LINK [Google Scholar]
  88. Ginovska-Pangovska B., Dutta A., Reback M. L., Linehan J. C., and Shaw W. J. Acc. Chem. Res., 2014, 47, (8), 2621 LINK [Google Scholar]
  89. Smith S. E., Yang J. Y., DuBois D. L., and Bullock R. M. Angew. Chem. Int. Ed., 2012, 51, (13), 3152 LINK [Google Scholar]
  90. Dutta A., Lense S., Hou J., Engelhard M. H., Roberts J. A. S., and Shaw W. J. J. Am. Chem. Soc., 2013, 135, (49), 18490 LINK [Google Scholar]
  91. Dutta A., DuBois D. L., Roberts J. A. S., and Shaw W. J. Proc. Natl. Acad. Sci. USA, 2014, 111, (46), 16286 LINK [Google Scholar]
  92. Dutta A., Roberts J. A. S., and Shaw W. J. Angew. Chem. Int. Ed., 2014, 53, (25), 6487 LINK [Google Scholar]
  93. Tran P. D., Le Goff A., Heidkamp J., Jousselme B., Guillet N., Palacin S., Dau H., Fontecave M., and Artero V. Angew. Chem. Int. Ed., 2011, 50, (6), 1371 LINK [Google Scholar]
  94. Le Goff A., Artero V., Jousselme B., Tran P. D., Guillet N., Métayé R., Fihri A., Palacin S., and Fontecave M. Science, 2009, 326, (5859), 1384 LINK [Google Scholar]
  95. Gentil S., Lalaoui N., Dutta A., Nedellec Y., Cosnier S., Shaw W. J., Artero V., and Le Goff A. Angew. Chem. Int. Ed., 2017, 56, (7), 1845 LINK [Google Scholar]
  96. Coutard N., Kaeffer N., and Artero V. Chem. Commun., 2016, 52, (95), 13728 LINK [Google Scholar]
  97. Jane R. T., Tran P. D., Andreiadis E. S., Pécaut J., and Artero V. Comptes Rendus Chimie, 2015, 18, (7), 752 LINK [Google Scholar]
  98. Morozan A., Jégou P., Jousselme B., and Palacin S. Phys. Chem. Chem. Phys., 2011, 13, (48), 21600 LINK [Google Scholar]
  99. Morozan A., Jégou P., Pinault M., Campidelli S., Jousselme B., and Palacin S. ChemSusChem, 2012, 5, (4), 647 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error