Skip to content
1887
Volume 62, Issue 2
  • ISSN: 2056-5135
  • oa Toward Platinum Group Metal-Free Catalysts for Hydrogen/Air Proton-Exchange Membrane Fuel Cells

    Catalyst activity in platinum-free substitute cathode and anode materials

  • Authors: Frédéric Jaouen1, Deborah Jones1, Nathan Coutard2, Vincent Artero2, Peter Strasser3 and Anthony Kucernak4
  • Affiliations: 1 Institut Charles Gerhardt Montpellier, CNRS - Université Montpellier - ENSCM, Place Eugene Bataillon34095 Montpellier cedex 5France 2 Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CNRS, CEA, 17 rue des Martyrs38054 Grenoble cedex 9France 3 Technische Universität Berlin, Institut für ChemieStrasse des 17. Juni 124, 10623 BerlinGermany 4 Department of Chemistry, Imperial College LondonSouth Kensington Campus, London, SW7 2AZUK
  • Source: Johnson Matthey Technology Review, Volume 62, Issue 2, Apr 2018, p. 231 - 255
  • DOI: https://doi.org/10.1595/205651318X696828
    • Published online: 01 Jan 2018

Abstract

The status, concepts and challenges toward catalysts free of platinum group metal (pgm) elements for proton-exchange membrane fuel cells (PEMFC) are reviewed. Due to the limited reserves of noble metals in the Earth’s crust, a major challenge for the worldwide development of PEMFC technology is to replace Pt with pgm-free catalysts with sufficient activity and stability. The priority target is the substitution of cathode catalysts (oxygen reduction) that account for more than 80% of pgms in current PEMFCs. Regarding hydrogen oxidation at the anode, ultralow Pt content electrodes have demonstrated good performance, but alternative non-pgm anode catalysts are desirable to increase fuel cell robustness, decrease the H purity requirements and ease the transition from H derived from natural gas to H produced from water and renewable energy sources.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X696828
2018-01-01
2025-01-22
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/2/Jaouen_16a_Imp.html?itemId=/content/journals/10.1595/205651318X696828&mimeType=html&fmt=ahah

References

  1. F. T. Wagner, B. Lakshmanan, M. F. Mathias, J. Phys. Chem. Lett., 2010, 1, (14), 2204 LINK https://doi.org/10.1021/jz100553m [Google Scholar]
  2. C. E. Thomas, Int. J. Hydrogen Energy, 2009, 34, (15), 6005 LINK https://doi.org/10.1016/j.ijhydene.2009.06.003 [Google Scholar]
  3. J. Garback, T. Ramsden, K. Wipke, S. Sprik, J. Kurtz, ‘Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project’, Workshop: Compressed Natural Gas and Hydrogen Fuels: Lessons Learned for the Safe Deployment of Vehicles, National Renewable Energy Laboratory of the US Department of Transportation and US Department of Energy, Washington, DC, USA, 10th–11th December, 2009 LINK https://energy.gov/sites/prod/files/2014/03/f12/cng_h2_workshop_13_ramsden.pdf [Google Scholar]
  4. “Global Transport Scenarios 2050”, World Energy Council, London, UK, 2011, 76 pp LINK https://www.worldenergy.org/wp-content/uploads/2012/09/wec_transport_scenarios_2050.pdf [Google Scholar]
  5. O. Gröger, H. A. Gasteiger, J.-P. Suchsland, J. Electrochem. Soc., 2015, 162, (14), A2605 LINK https://doi.org/10.1149/2.0211514jes [Google Scholar]
  6. H. R. Ellamla, I. Staffell, P. Bujlo, B. G. Pollet, S. Pasupathi, J. Power Sources, 2015, 293, 312 LINK https://doi.org/10.1016/j.jpowsour.2015.05.050 [Google Scholar]
  7. B. D. James, J. M. Huya-Kouadio, C. Houchins, D. A. DeSantis, “Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications: 2016 Update”, Rev. 3, Strategic Analysis Inc, Arlington, USA, January, 2017, 244 pp LINK https://energy.gov/sites/prod/files/2017/06/f34/fcto_sa_2016_pemfc_transportation_cost_analysis.pdf [Google Scholar]
  8. “Fuel Cell Technologies Office: Multi-Year Research, Development, and Demonstration Plan: Planned Program Activities for 2011-2020”, Office of Energy Efficiency and Renewable Energy, Washington, DC, USA, 2013 LINK https://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22 [Google Scholar]
  9. G. Wu, P. Zelenay, Acc. Chem. Res., 2013, 46, (8), 1878 LINK https://doi.org/10.1021/ar400011z [Google Scholar]
  10. F. Jaouen, J.-P. Dodelet, J. Zhang, ‘Heat-Treated Transition Metal-N x C y Electrocatalysts for the O2 Reduction in Acid PEM Fuel Cells’, in “Non-Noble Metal Fuel Cell Catalysts”, eds. Z. Chen, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2014, pp. 29118 LINK https://doi.org/10.1002/9783527664900.ch2 [Google Scholar]
  11. A. Serov, C. Kwak, Appl. Catal. B: Environ., 2009, 90, (3–4), 313 LINK https://doi.org/10.1016/j.apcatb.2009.03.030 [Google Scholar]
  12. A. Brouzgou, S. Q. Song, P. Tsiakaras, Appl. Catal. B: Environ., 2012, 127, 371 LINK https://doi.org/10.1016/j.apcatb.2012.08.031 [Google Scholar]
  13. H. A. Gasteiger, J. E. Panels, S. G. Yan, J. Power Sources, 2004, 127, (1–2), 162 LINK https://doi.org/10.1016/j.jpowsour.2003.09.013 [Google Scholar]
  14. C. Chen, Y. Kang, Z. Huo, Z. Zhu, W. Huang, H. L. Xin, J. D. Snyder, D. Li, J. A. Herron, M. Mavrikakis, M. Chi, K. L. More, Y. Li, N. M. Markovic, G. A. Somorjai, P. Yang, V. R. Stamenkovic, Science, 2014, 343, (6177), 1339 LINK https://doi.org/10.1126/science.1249061 [Google Scholar]
  15. M. Li, Z. Zhao, T. Cheng, A. Fortunelli, C.-Y. Chen, R. Yu, Q. Zhang, L. Gu, B. V. Merinov, Z. Lin, E. Zhu, T. Yu, Q. Jia, J. Guo, L. Zhang, W. A. Goddard III, Y. Huang, X. Duan, Science, 2016, 354, (6318), 1414 LINK https://doi.org/10.1126/science.aaf9050 [Google Scholar]
  16. D. Banham, S. Ye, ACS Energy Lett., 2017, 2, (3), 629 LINK https://doi.org/10.1021/acsenergylett.6b00644 [Google Scholar]
  17. A. Kongkanand, M. F. Mathias, J. Phys. Chem. Lett., 2016, 7, (7), 1127 LINK https://doi.org/10.1021/acs.jpclett.6b00216 [Google Scholar]
  18. N. Nonoyama, S. Okazaki, A. Z. Weber, Y. Ikogi, T. Yoshida, J. Electrochem. Soc., 2011, 158, (4), B416 LINK https://doi.org/10.1149/1.3546038 [Google Scholar]
  19. Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, Energy Environ. Sci., 2011, 4, (9), 3167 LINK https://doi.org/10.1039/C0EE00558D [Google Scholar]
  20. F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.-P. Dodelet, G. Wu, H. T. Chung, C. M. Johnston, P. Zelenay, Energy Environ. Sci., 2011, 4, (1), 114 LINK https://doi.org/10.1039/C0EE00011F [Google Scholar]
  21. H. Fei, J. Dong, M. J. Arellano-Jiménez, G. Ye, N. D. Kim, E. L. G. Samuel, Z. Peng, Z. Zhu, F. Qin, J. Bao, M. J. Yacaman, P. M. Ajayan, D. Chen, J. M. Tour, Nature Commun., 2015, 6, 8668 LINK https://doi.org/10.1038/ncomms9668 [Google Scholar]
  22. H. T. Chung, D. A. Cullen, D. Higgins, B. T. Sneed, E. F. Holby, K. L. More, P. Zelenay, Science, 2017, 357, (6350), 479 LINK https://doi.org/10.1126/science.aan2255 [Google Scholar]
  23. A. Zitolo, V. Goellner, V. Armel, M.-T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Nature Mater., 2015, 14, (9), 937 LINK https://doi.org/10.1038/nmat4367 [Google Scholar]
  24. N. Ramaswamy, U. Tylus, Q. Jia, S. Mukerjee, J. Am. Chem. Soc., 2013, 135, (41), 15443 LINK https://doi.org/10.1021/ja405149m [Google Scholar]
  25. A. Zitolo, N. Ranjbar-Sahraie, T. Mineva, J. Li, Q. Jia, S. Stamatin, G. F. Harrington, S. M. Lyth, P. Krtil, S. Mukerjee, E. Fonda, F. Jaouen, Nature Commun., 2017, 8, 957 LINK https://doi.org/10.1038/s41467-017-01100-7 [Google Scholar]
  26. “2017 Annual Work Plan and Budget”, Fuel Cells and Hydrogen 2 Joint Undertaking (FCH2JU), Brussels, Belgium, 2017 LINK http://www.fch.europa.eu/sites/default/files/FCH2%20JU%202017%20AWP%20and%20Budget_FINAL-20122016-Clean%20%28ID%202892681%29_0.pdf [Google Scholar]
  27. ‘Fuel Cell Technologies Office Annual FOA’, Funding Number DE-FOA-0001647, Fuel Cells Technology Office, Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC, USA, 18th November, 2016 LINK https://energy.gov/eere/fuelcells/articles/fuel-cell-technologies-office-annual-foa [Google Scholar]
  28. ‘Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions on the Review of the List of Critical Raw Materials for the EU and the Implementation of the Raw Materials Initiative’, COM/2014/0297 final, 26th May, 2014 LINK http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52014DC0297
  29. Ballard Power Systems Inc,, ‘Ballard to Offer World’s First PEM Fuel Cell Product Using Non Precious Metal Catalyst’, PR Newswire, New York, USA, 12th September, 2017 LINK https://www.prnewswire.com/news-releases/ballard-to-offer-worlds-first-pem-fuel-cell-product-using-non-precious-metal-catalyst-644077763.html [Google Scholar]
  30. M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Science, 2009, 324, (5923), 71 LINK https://doi.org/10.1126/science.1170051 [Google Scholar]
  31. E. Proietti, F. Jaouen, M. Lefèvre, N. Larouche, J. Tian, J. Herranz, J.-P. Dodelet, Nature Commun., 2011, 2, 416 LINK https://doi.org/10.1038/ncomms1427 [Google Scholar]
  32. E. F. Holby, G. Wu, P. Zelenay, C. D. Taylor, J. Phys. Chem. C, 2014, 118, (26), 14388 LINK https://doi.org/10.1021/jp503266h [Google Scholar]
  33. W. Liang, J. Chen, Y. Liu, S. Chen, ACS Catal., 2014, 4, (11), 4170 LINK https://doi.org/10.1021/cs501170a [Google Scholar]
  34. J. Shui, C. Chen, L. Grabstanowicz, D. Zhao, D.-J. Liu, Proc. Natl. Acad. Sci. USA, 2015, 112, (34), 10629 LINK https://doi.org/10.1073/pnas.1507159112 [Google Scholar]
  35. Y. Nabae, S. Nagata, T. Hayakawa, H. Niwa, Y. Harada, M. Oshima, A. Isoda, A. Matsunaga, K. Tanaka, T. Aoki, Sci. Rep., 2016, 6, 23276 LINK https://doi.org/10.1038/srep23276 [Google Scholar]
  36. F. Jaouen, V. Goellner, M. Lefèvre, J. Herranz, E. Proietti, J. P. Dodelet, Electrochim. Acta, 2013, 87, 619 LINK https://doi.org/10.1016/j.electacta.2012.09.057 [Google Scholar]
  37. J. Y. Cheon, T. Kim, Y. Choi, H. Y. Jeong, M. G. Kim, Y. J. Sa, J. Kim, Z. Lee, T.-H. Yang, K. Kwon, O. Terasaki, G.-G. Park, R. R. Adzic, S. H. Joo, Sci. Rep., 2013, 3, 2715 LINK https://doi.org/10.1038/srep02715 [Google Scholar]
  38. A. Serov, K. Artyushkova, E. Niangar, C. Wang, N. Dale, F. Jaouen, M.-T. Sougrati, Q. Jia, S. Mukerjee, P. Atanassov, Nano Energy, 2015, 16, 293 LINK https://doi.org/10.1016/j.nanoen.2015.07.002 [Google Scholar]
  39. V. Armel, S. Hindocha, F. Salles, S. Bennett, D. Jones, F. Jaouen, J. Am. Chem. Soc., 2017, 139, (1), 453 LINK https://doi.org/10.1021/jacs.6b11248 [Google Scholar]
  40. H. A. Gasteiger, S. S. Kocha, B. Sompalli, F. T. Wagner, Appl. Catal. B: Environ., 2005, 56, (1–2), 9 LINK https://doi.org/10.1016/j.apcatb.2004.06.021 [Google Scholar]
  41. A. Morozan, F. Jaouen, Energy Environ. Sci., 2012, 5, (11), 9269 LINK https://doi.org/10.1039/C2EE22989G [Google Scholar]
  42. D. Zhao, J.-L. Shui, L. R. Grabstanowicz, C. Chen, S. M. Commet, T. Xu, J. Lu, D.-J. Liu, Adv. Mater., 2014, 26, (7), 1093 LINK https://doi.org/10.1002/adma.201304238 [Google Scholar]
  43. P. Su, H. Xiao, J. Zhao, Y. Yao, Z. Shao, C. Li, Q. Yang, Chem. Sci., 2013, 4, (7), 2941 LINK https://doi.org/10.1039/C3SC51052B [Google Scholar]
  44. F. Jaouen, M. Lefèvre, J.-P. Dodelet, M. Cai, J. Phys. Chem. B, 2006, 110, (11), 5553 LINK https://doi.org/10.1021/jp057135h [Google Scholar]
  45. J. Anibal, H. G. Romero, N. D. Leonard, C. Gumeci, B. Halevi, S. C. Barton, Appl. Catal. B: Environ., 2016, 198, 32 LINK https://doi.org/10.1016/j.apcatb.2016.05.038 [Google Scholar]
  46. I. Herrmann, U. I. Kramm, S. Fiechter, P. Bogdanoff, Electrochim. Acta, 2009, 54, (18), 4275 LINK https://doi.org/10.1016/j.electacta.2009.02.056 [Google Scholar]
  47. S. Stariha, K. Artyushkova, A. Serov, P. Atanassov, Int. J. Hydrogen Energy, 2015, 40, (42), 14676 LINK https://doi.org/10.1016/j.ijhydene.2015.05.185 [Google Scholar]
  48. G. Wu, K. L. More, C. M. Johnston, P. Zelenay, Science, 2011, 332, (6028), 443 LINK https://doi.org/10.1126/science.1200832 [Google Scholar]
  49. G. Wu, K. Artyushkova, M. Ferrandon, A. J. Kropf, D. Myers, P. Zelenay, ECS Trans., 2009, 25, (1), 1299 LINK https://doi.org/10.1149/1.3210685 [Google Scholar]
  50. D. Malko, T. Lopes, E. Symianakis, A. R. Kucernak, J. Mater. Chem. A, 2016, 4, (1), 142 LINK https://doi.org/10.1039/C5TA05794A [Google Scholar]
  51. T. R. Ralph, M. P. Hogarth, Platinum Metals Rev., 2002, 46, (3), 117 LINK http://www.technology.matthey.com/article/46/3/117-135/ [Google Scholar]
  52. J. A. Varnell, E. C. M. Tse, C. E. Schulz, T. T. Fister, R. T. Haasch, J. Timoshenko, A. I. Frenkel, A. A. Gewirth, Nature Commun., 2016, 7, 12582 LINK https://doi.org/10.1038/ncomms12582 [Google Scholar]
  53. T. N. Huan, R. T. Jane, A. Benayad, L. Guetaz, P. D. Tran, V. Artero, Energy Environ. Sci., 2016, 9, (3), 940 LINK https://doi.org/10.1039/C5EE02739J [Google Scholar]
  54. F. Calle-Vallejo, J. Tymoczko, V. Colic, Q. H. Vu, M. D. Pohl, K. Morgenstern, D. Loffreda, P. Sautet, W. Schuhmann, A. S. Bandarenka, Science, 2015, 350, (6257), 185 LINK https://doi.org/10.1126/science.aab3501 [Google Scholar]
  55. F. Calle-Vallejo, M. D. Pohl, D. Reinisch, D. Loffreda, P. Sautet, A. S. Bandarenka, Chem. Sci., 2017, 8, (3), 2283 LINK https://doi.org/10.1039/C6SC04788B [Google Scholar]
  56. S. Brüller, H.-W. Liang, U. I. Kramm, J. W. Krumpfer, X. Feng, K. Müllen, J. Mater. Chem. A, 2015, 3, (47), 23799 LINK https://doi.org/10.1039/C5TA06309D [Google Scholar]
  57. A. Serov, M. H. Robson, M. Smolnik, P. Atanassov, Electrochim. Acta, 2012, 80, 213 LINK https://doi.org/10.1016/j.electacta.2012.07.008 [Google Scholar]
  58. J. Y. Cheon, J. H. Kim, J. H. Kim, K. C. Goddeti, J. Y. Park, S. H. Joo, J. Am. Chem. Soc., 2014, 136, (25), 8875 LINK https://doi.org/10.1021/ja503557x [Google Scholar]
  59. U. I. Kramm, I. Abs-Wurmbach, I. Herrmann-Geppert, J. Radnik, S. Fiechter, P. Bogdanoff, J. Electrochem. Soc., 2011, 158, (1), B69 LINK https://doi.org/10.1149/1.3499621 [Google Scholar]
  60. M. J. Workman, A. Serov, L. Tsui, P. Atanassov, K. Artyushkova, ACS Energy Lett., 2017, 2, (7), 1489 LINK https://doi.org/10.1021/acsenergylett.7b00391 [Google Scholar]
  61. F. Charreteur, F. Jaouen, S. Ruggeri, J.-P. Dodelet, Electrochim. Acta, 2008, 53, (6), 2925 LINK https://doi.org/10.1016/j.electacta.2007.11.002 [Google Scholar]
  62. F. Jaouen, J. Herranz, M. Lefèvre, J.-P. Dodelet, U. I. Kramm, I. Herrmann, P. Bogdanoff, J. Maruyama, T. Nagaoka, A. Garsuch, J. R. Dahn, T. Olson, S. Pylypenko, P. Atanassov, E. A. Ustinov, ACS Appl. Mater. Interfaces., 2009, 1, (8), 1623 LINK https://doi.org/10.1021/am900219g [Google Scholar]
  63. C. Gumeci, N. Leonard, Y. Liu, S. McKinney, B. Halevi, S. C. Barton, J. Mater. Chem. A, 2015, 3, (43), 21494 LINK https://doi.org/10.1039/C5TA05995J [Google Scholar]
  64. U. I. Kramm, I. Herrmann, S. Fiechter, G. Zehl, I. Zizak, I. Abs-Wurmbach, J. Radnik, I. Dorbandt, P. Bogdanoff, ECS Trans., 2009, 25, (1), 659 LINK https://doi.org/10.1149/1.3210617 [Google Scholar]
  65. V. Goellner, V. Armel, A. Zitolo, E. Fonda, F. Jaouen, J. Electrochem. Soc., 2015, 162, (6), H403 LINK https://doi.org/10.1149/2.1091506jes [Google Scholar]
  66. F. Jaouen, J.-P. Dodelet, Electrochim. Acta, 2007, 52, (19), 5975 LINK https://doi.org/10.1016/j.electacta.2007.03.045 [Google Scholar]
  67. U. I. Kramm, J. Herranz, N. Larouche, T. M. Arruda, M. Lefèvre, F. Jaouen, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, S. Mukerjee, J.-P. Dodelet, Phys. Chem. Chem. Phys., 2012, 14, (33), 11673 LINK https://doi.org/10.1039/C2CP41957B [Google Scholar]
  68. M. S. Thorum, J. M. Hankett, A. A. Gewirth, J. Phys. Chem. Lett., 2011, 2, (4), 295 LINK https://doi.org/10.1021/jz1016284 [Google Scholar]
  69. Q. Zhang, K. Mamtani, D. Jain, U. Ozkan, A. Asthagiri, J. Phys. Chem. C, 2016, 120, (28), 15173 LINK https://doi.org/10.1021/acs.jpcc.6b03933 [Google Scholar]
  70. S. Gupta, C. Fierro, E. Yeager, J. Electroanal. Chem. Interfacial Electrochem., 1991, 306, (1–2), 239 LINK https://doi.org/10.1016/0022-0728(91)85233-F [Google Scholar]
  71. W. Li, A. Yu, D. C. Higgins, B. G. Llanos, Z. Chen, J. Am. Chem. Soc., 2010, 132, (48), 17056 LINK https://doi.org/10.1021/ja106217u [Google Scholar]
  72. N. R. Sahraie, U. I. Kramm, J. Steinberg, Y. Zhang, A. Thomas, T. Reier, J.-P. Paraknowitsch, P. Strasser, Nature Commun., 2015, 6, 8618 LINK https://doi.org/10.1038/ncomms9618 [Google Scholar]
  73. D. Malko, A. Kucernak, T. Lopes, Nature Commun., 2016, 7, 13285 LINK https://doi.org/10.1038/ncomms13285 [Google Scholar]
  74. J. L. Kneebone, S. L. Daifuku, J. A. Kehl, G. Wu, H. T. Chung, M. Y. Hu, E. E. Alp, K. L. More, P. Zelenay, E. F. Holby, M. L. Neidig, J. Phys. Chem. C, 2017, 121, (30), 16283 LINK https://doi.org/10.1021/acs.jpcc.7b03779 [Google Scholar]
  75. C. M. Zalitis, J. Sharman, E. Wright, A. R. Kucernak, Electrochim. Acta, 2015, 176, 763 LINK https://doi.org/10.1016/j.electacta.2015.06.146 [Google Scholar]
  76. W. Sheng, A. P. Bivens, M. Myint, Z. Zhuang, R. V. Forest, Q. Fang, J. G. Chen, Y. Yan, Energy Environ. Sci., 2014, 7, (5), 1719 LINK https://doi.org/10.1039/C3EE43899F [Google Scholar]
  77. V. Sh. Palanker, R. A. Gajyev, D. V. Sokolsky, Electrochim. Acta, 1977, 22, (2), 133 LINK https://doi.org/10.1016/0013-4686(77)85025-1 [Google Scholar]
  78. M. Nagai, M. Yoshida, H. Tominaga, Electrochim. Acta, 2007, 52, (17), 5430 LINK https://doi.org/10.1016/j.electacta.2007.02.065 [Google Scholar]
  79. S. Izhar, M. Yoshida, M. Nagai, Electrochim. Acta, 2009, 54, (4), 1255 LINK https://doi.org/10.1016/j.electacta.2008.08.049 [Google Scholar]
  80. D. R. McIntyre, G. T. Burstein, A. Vossen, J. Power Sources, 2002, 107, (1), 67 LINK https://doi.org/10.1016/S0378-7753(01)00987-9 [Google Scholar]
  81. S. Izhar, M. Nagai, J. Power Sources, 2008, 182, (1), 52 LINK https://doi.org/10.1016/j.jpowsour.2008.03.084 [Google Scholar]
  82. K. Pandey, S. T. A. Islam, T. Happe, F. A. Armstrong, Proc. Natl. Acad. Sci. USA, 2017, 114, (15), 3843 LINK https://doi.org/10.1073/pnas.1619961114 [Google Scholar]
  83. G. Berggren, A. Adamska, C. Lambertz, T. R. Simmons, J. Esselborn, M. Atta, S. Gambarelli, J.-M. Mouesca, E. Reijerse, W. Lubitz, T. Happe, V. Artero, M. Fontecave, Nature, 2013, 499, (7456), 66 LINK https://doi.org/10.1038/nature12239 [Google Scholar]
  84. R. Hidalgo, P. A. Ash, A. J. Healy, K. A. Vincent, Angew. Chem. Int. Ed., 2015, 54, (24), 7110 LINK https://doi.org/10.1002/anie.201502338 [Google Scholar]
  85. A. D. Wilson, R. H. Newell, M. J. McNevin, J. T. Muckerman, M. R. DuBois, D. L. DuBois, J. Am. Chem. Soc., 2006, 128, (1), 358 LINK https://doi.org/10.1021/ja056442y [Google Scholar]
  86. C. J. Curtis, A. Miedaner, R. Ciancanelli, W. W. Ellis, B. C. Noll, M. R. DuBois, D. L. DuBois, Inorg. Chem., 2003, 42, (1), 216 LINK https://doi.org/10.1021/ic020610v [Google Scholar]
  87. D. L. DuBois, Inorg. Chem., 2014, 53, (8), 3935 LINK https://doi.org/10.1021/ic4026969 [Google Scholar]
  88. B. Ginovska-Pangovska, A. Dutta, M. L. Reback, J. C. Linehan, W. J. Shaw, Acc. Chem. Res., 2014, 47, (8), 2621 LINK https://doi.org/10.1021/ar5001742 [Google Scholar]
  89. S. E. Smith, J. Y. Yang, D. L. DuBois, R. M. Bullock, Angew. Chem. Int. Ed., 2012, 51, (13), 3152 LINK https://doi.org/10.1002/anie.201108461 [Google Scholar]
  90. A. Dutta, S. Lense, J. Hou, M. H. Engelhard, J. A. S. Roberts, W. J. Shaw, J. Am. Chem. Soc., 2013, 135, (49), 18490 LINK https://doi.org/10.1021/ja407826d [Google Scholar]
  91. A. Dutta, D. L. DuBois, J. A. S. Roberts, W. J. Shaw, Proc. Natl. Acad. Sci. USA, 2014, 111, (46), 16286 LINK https://doi.org/10.1073/pnas.1416381111 [Google Scholar]
  92. A. Dutta, J. A. S. Roberts, W. J. Shaw, Angew. Chem. Int. Ed., 2014, 53, (25), 6487 LINK https://doi.org/10.1002/anie.201402304 [Google Scholar]
  93. P. D. Tran, A. Le Goff, J. Heidkamp, B. Jousselme, N. Guillet, S. Palacin, H. Dau, M. Fontecave, V. Artero, Angew. Chem. Int. Ed., 2011, 50, (6), 1371 LINK https://doi.org/10.1002/anie.201005427 [Google Scholar]
  94. A. Le Goff, V. Artero, B. Jousselme, P. D. Tran, N. Guillet, R. Métayé, A. Fihri, S. Palacin, M. Fontecave, Science, 2009, 326, (5859), 1384 LINK https://doi.org/10.1126/science.1179773 [Google Scholar]
  95. S. Gentil, N. Lalaoui, A. Dutta, Y. Nedellec, S. Cosnier, W. J. Shaw, V. Artero, A. Le Goff, Angew. Chem. Int. Ed., 2017, 56, (7), 1845 LINK https://doi.org/10.1002/anie.201611532 [Google Scholar]
  96. N. Coutard, N. Kaeffer, V. Artero, Chem. Commun., 2016, 52, (95), 13728 LINK https://doi.org/10.1039/C6CC06311J [Google Scholar]
  97. R. T. Jane, P. D. Tran, E. S. Andreiadis, J. Pécaut, V. Artero, Comptes Rendus Chimie, 2015, 18, (7), 752 LINK https://doi.org/10.1016/j.crci.2015.03.005 [Google Scholar]
  98. A. Morozan, P. Jégou, B. Jousselme, S. Palacin, Phys. Chem. Chem. Phys., 2011, 13, (48), 21600 LINK https://doi.org/10.1039/C1CP23199E [Google Scholar]
  99. A. Morozan, P. Jégou, M. Pinault, S. Campidelli, B. Jousselme, S. Palacin, ChemSusChem, 2012, 5, (4), 647 LINK https://doi.org/10.1002/cssc.201100675 [Google Scholar]
/content/journals/10.1595/205651318X696828
Loading
/content/journals/10.1595/205651318X696828
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test