Skip to content
1887
Volume 61, Issue 1
  • ISSN: 2056-5135

Abstract

Shape memory alloys are remarkable materials that open up a wide range of uses. Nitinol, an alloy of nickel and titanium, is one of the most important of these materials. Some of its major applications are in medical devices where its unique properties allow minimally invasive surgery and implants to improve quality of life for millions of people. With the growing global population and increasing numbers of people able to access quality healthcare, the availability of advanced materials such as Nitinol is essential to allow continued progress in improving lives across the world. This article will review the discovery, material properties, processing methods and medical applications of Nitinol, with a special focus on stents for the treatment of arterial diseases, which constitute one of Nitinol’s major uses.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X694524
2017-01-01
2024-06-14
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/61/1/JMTR-61-1-Kapoor.html?itemId=/content/journals/10.1595/205651317X694524&mimeType=html&fmt=ahah

References

  1. ‘World Population Prospects: The 2015 Revision, Key Findings and Advance Tables’, ESA/P/WP.241, United Nations, Department of Economic and Social Affairs, Population Division, New York, USA, 2015, pp. 26 LINK https://esa.un.org/unpd/wpp/publications/files/key_findings_wpp_2015.pdf [Google Scholar]
  2. Sharma M., and Majumdar P. K. Indian J. Occup. Environ. Med., 2009, 13, (3), 109 LINK https://dx.doi.org/10.4103%2F0019-5278.58912 [Google Scholar]
  3. Hall T. ‘Specialty Metals Make Sophisticated Medical Devices Possible’, Med. Design Briefs, 1st September, 2013 LINK http://www.medicaldesignbriefs.com/component/content/article/mdb/features/17206 [Google Scholar]
  4. ‘Overview of Biomaterials and Their Use in Medical Devices’, in “Handbook of Materials for Medical Devices”, ASM International, Ohio, USA, 2003, pp. 111 LINK http://www.asminternational.org/documents/10192/1849770/06974G_Chapter_1.pdf [Google Scholar]
  5. Duerig T., Pelton A., and Stöckel D. Mater. Sci. Eng. A, 1999, 273–275, 149 LINK http://dx.doi.org/10.1016/S0921-5093(99)00294-4 [Google Scholar]
  6. Pelton A. R., Stöckel D., and Duerig T. W. Mater. Sci. Forum, 2000, 327–328, 63 LINK http://dx.doi.org/10.4028/www.scientific.net/MSF.327-328.63 [Google Scholar]
  7. ‘Peripheral Artery Disease’, Harvard Health Publications, Harvard Medical School, USA, April, 2012 LINK http://www.health.harvard.edu/heart-health/peripheral-artery-disease [Google Scholar]
  8. GlobalData, ‘MediPoint: Peripheral Vascular Stents for the Lower Extremity – Global Analysis and Market Forecasts’, GlobalData Healthcare, London, UK, April, 2013 LINK http://store.globaldata.com/market-reports/medical-devices/peripheral-vascular-stents-for-the-lower-extremity-global-analysis-and-market-forecasts [Google Scholar]
  9. GlobalData, ‘MediPoint: Peripheral Vascular Interventions – Global Analysis and Market Forecasts’, GlobalData Healthcare, London, UK, March, 2016 LINK http://store.globaldata.com/market-reports/medical-devices/medipoint-peripheral-vascular-interventions-global-analysis-and-market-forecasts [Google Scholar]
  10. Transparency Market Research, ‘Nitinol Medical Devices Market - Semi-finished Raw Material (Nitinol Tubes, Wiring and Others) and Final Medical Components (Nitinol Stents, Guidewires and Others) – Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2013–2019’, Transparency Market Research, Albany, New York, USA, May, 2014 LINK http://www.transparencymarketresearch.com/nitinol-medical-devices.html [Google Scholar]
  11. Kauffman G. B., and Mayo I. Chem Matters, October, 1993, 4 LINK http://www.asminternational.org/documents/10192/1942082/chemmattersmemory.pdf/269d8b64-3878-49bd-818a-4a5fd80e1fdb [Google Scholar]
  12. Duerig T., and Melton K. ‘The History of Our Industry’, NDC Tech Note: The International Conference on Shape Memory and Superelastic Technologies (SMST), Oxfordshire, UK, 18th–22nd May, 2015 [Google Scholar]
  13. Hodgson D. E., and Brown J. W. ‘Using Nitinol Alloys’, Shape Memory Applications, Inc., San Jose, California, USA, 2000 [Google Scholar]
  14. Machado L. G., and Savi M. A. Braz. J. Med. Biol. Res., 2003, 36, (6), 683 LINK http://dx.doi.org/10.1590/S0100-879X2003000600001 [Google Scholar]
  15. Hodgson D. E., Wu M. H., and Biermann R. J. ‘Shape Memory Alloys’, in “ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”, ASM International, Ohio, USA, 1990, pp. 897902 LINK http://www.asminternational.org/documents/10192/22533690/06182G_Sample_BuyNow.pdf/417224c4-b008-444e-a8ff-f0ad8d7540d3 [Google Scholar]
  16. Stöckel D. ‘Nitinol – A Material with Unusual Properties’, Endovascular Update, 1998, (1), 1 LINK https://www.nitinol.com/wp-content/uploads/2012/01/031.pdf [Google Scholar]
  17. Shabalovskaya S. A. Bio-Med. Mater. Eng., 1996, 6, (4), 267 LINK http://dx.doi.org/10.3233/BME-1996-6405 [Google Scholar]
  18. Kapoor D. ‘An Overview of Nitinol: Superelastic and Shape Memory’, Med. Design Briefs, October, 2015 LINK http://www.medicaldesignbriefs.com/component/content/article/mdb/tech-briefs/23077 [Google Scholar]
  19. Adharapurapu R. R. ‘Phase Transformations in Nickel-Rich Nickel-Titanium Alloys: Influence of Strain-Rate, Temperature, Thermomechanical Treatment and Nickel Composition on the Shape Memory and Superelastic Characteristics’, PhD Thesis, University of California, San Diego, USA, 2007 LINK http://escholarship.org/uc/item/7dt6n9p8# [Google Scholar]
  20. ‘Standard Test Method for Transformation Temperature of Nickel-Titanium Alloys by Thermal Analysis’, ASTM F2004-05(2010), ASTM International, West Conshohocken, Pennsylvania, USA LINK http://dx.doi.org/10.1520/F2004-05R10 [Google Scholar]
  21. Johnson Matthey Medical Components, Measuring Transformation Temperatures in Nitinol Alloys: http://jmmedical.com/resources/211/Measuring-Transformation-Temperatures-in-Nitinol-Alloys.html (Accessed on 4th January 2017) LINK http://jmmedical.com/resources/211/Measuring-Transformation-Temperatures-in-Nitinol-Alloys.html
  22. ‘Standard Test Method for Determination of Transformation Temperature of Nickel-Titanium Shape Memory Alloys by Bend and Free Recovery’, ASTM F2082 / F2082M-16, ASTM International, West Conshohocken, Pennsylvania, USA LINK http://dx.doi.org/10.1520/F2082_F2082M-16 [Google Scholar]
  23. ‘Standard Test Method for Tension Testing of Nickel-Titanium Superelastic Materials’, ASTM F2516-14, ASTM International, West Conshohocken, Pennsylvania, USA LINK http://dx.doi.org/10.1520/F2516-14 [Google Scholar]
  24. Duerig T., Stoeckel D., Johnson D., ‘SMA – Smart Materials for Medical Applications’, European Workshop on Smart Structures in Engineering and Technology, Giens, France, 21st May, 2002, in Proceedings of SPIE, Vol. 4763, ed. and Culshaw Brian 2003, pp. 715 LINK http://dx.doi.org/10.1117/12.508666 [Google Scholar]
  25. Pelton A. R., Russell S. M., and DiCello J. J. Met., 2003, 55, (5), 33 LINK http://dx.doi.org/10.1007/s11837-003-0243-3 [Google Scholar]
  26. Russell S. M., and Pelton A. R. ‘Nitinol Melting and Fabrication’, in “SMST-2000 Proceedings of the International Conference on Shape Memory and Superelastic Technologies”, Pacific Grove, California, USA, 30th April–4th May, 2000, eds. Russell S. M., ASM International, Ohio, USA, 2000 LINK http://www.asminternational.org/web/smst/events/proceedings?p_p_auth=SfK84Gk8&p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_assetEntryId=3301315&_101_type=content&_101_groupId=10192&_101_urlTitle=nitinol-melting-and-fabrication [Google Scholar]
  27. ‘Standard Specification for Wrought Nickel-Titanium Shape Memory Alloys for Medical Devices and Surgical Implants’, ASTM F2063-12, ASTM International, West Conshohocken, Pennsylvania, USA LINK http://dx.doi.org/10.1520/F2063-12 [Google Scholar]
  28. Kumar P. K., and Lasley C. J. Mater. Eng. Perform., 2014, 23, (7), 2457 LINK http://dx.doi.org/10.1007/s11665-013-0857-8 [Google Scholar]
  29. Robertson S. W., Launey M., Shelley O., Ong I., Vien L., Senthilnathan K., Saffari P., Schlegel S., and Pelton A. R. J. Mech. Behav. Biomed. Mater., 2015, 51, 119 LINK http://dx.doi.org/10.1016/j.jmbbm.2015.07.003 [Google Scholar]
  30. Steegmüller R., Ulmer J., Quellmalz M., Wohlschlögel M., and Schüßler A. J. Mater. Eng. Perform., 2014, 23, (7), 2450 LINK http://dx.doi.org/10.1007/s11665-014-1054-0 [Google Scholar]
  31. Johnson Matthey Medical Components, Nitinol Shape Setting: http://jmmedical.com/resources/251/Nitinol-Shape-Setting.html (Accessed on 4th January 2017)
  32. Poncet P. P., and Pelton A. R. ‘Nitinol Medical Device Design Considerations’, in “SMST-2000 Proceedings of the International Conference on Shape Memory and Superelastic Technologies”, Pacific Grove, California, USA, 30th April–4th May, 2000, eds. Russell S. M., ASM International, Ohio, USA, 2000 [Google Scholar]
  33. Morgan N. B. Mater. Sci. Eng. A, 2004, 378, (1–2), 16 LINK http://dx.doi.org/10.1016/j.msea.2003.10.326 [Google Scholar]
  34. Poncet P. P. ‘Applications of Superelastic Nitinol Tubing’, in “SMST-1994 Proceedings of the First International Conference on Shape Memory and Superelastic Technologies”, Pacific Grove, California, USA, 7th–10th March, 1994, ASM International, Ohio, USA, 1994 [Google Scholar]
  35. Shabalovskaya S. A., Anderegg J., and Van Humbeeck J. Acta Biomater., 2008, 4, (3), 447 LINK http://dx.doi.org/10.1016/j.actbio.2008.01.013 [Google Scholar]
  36. O’Brien B., Carroll W. M., and Kelly M. J. Biomaterials, 2002, 23, (8), 1739 LINK http://dx.doi.org/10.1016/S0142-9612(01)00299-X [Google Scholar]
  37. Stoeckel D. Min. Invas. Therapy Allied Technol., 2000, 9, (2), 81 LINK http://dx.doi.org/10.3109/13645700009063054 [Google Scholar]
  38. Dewaele F., Kalmar A. F., De Ryck F., Lumen N., Williams L., Baert E., Vereecke H., Okito J. P. K., Mabilde C., Blanckaert B., Keereman V., Leybaert L., Van Nieuwenhove Y., Caemaert J., and Van Roost D. Surg. Innov., 2014, 21, (3), 303 LINK http://dx.doi.org/10.1177/1553350613508015 [Google Scholar]
  39. Michaels B. ‘Using Nitinol and Lasers to Make Articulated Endoscopic Tool Tips’, Medical Product Manufacturing News, Medtech Pulse, UBM Canon, Santa Monica, California, USA, 27th February, 2014 LINK http://www.qmed.com/mpmn/medtechpulse/using-nitinol-and-lasers-make-articulated-endoscopic-tool-tips [Google Scholar]
  40. Duerig T., and Wholey M. Min. Invas. Therapy Allied Technol., 2002, 11, (4), 173 LINK http://dx.doi.org/10.1080/136457002760273386 [Google Scholar]
  41. Stoeckel D., Pelton A., and Duerig T. Eur. Radiol., 2004, 14, (2), 292 LINK http://dx.doi.org/10.1007/s00330-003-2022-5 [Google Scholar]
  42. Poncin P., Proft J., ‘Stent Tubing: Understanding the Desired Attributes’, in “Medical Device Materials: Proceedings of the Materials & Processes for Medical Devices Conference 2003”, 8th–10th September, 2003, Anaheim, California, USA, ed. and Shrivastava S. ASM International, Ohio, USA, 2004, pp. 253259 LINK http://www.asminternational.org/home;jsessionid=EE01C636A1745829F0B8DC2B9A85EA1D?p_p_auth=x9mIHYNj&p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&controlPanelCategory=portlet_56&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_assetEntryId=3368104&_101_type=content&_101_groupId=10192&_101_urlTitle=stent-tubing-understanding-the-desired-attributes&redirect=%2Fhome%2F-%2Fjournal_content%2F56%2F10192%2F06975G%2FPUBLICATION%3Bjsessionid%3D2618AD889B9A2C05E36CEAB424807BF0%3Fp_p_id%3D56%26p_p_lifecycle%3D0%26p_p_state%3Dexclusive%26p_p_mode%3Dview%26controlPanelCategory%3Dportlet_56 [Google Scholar]
  43. Dave Mackiewicz, Process Engineer, Johnson Matthey, San Jose, California, USA, Private communication, January, 2016
  44. Bonsignore C., ‘A Decade of Evolution in Stent Design’, in “SMST-2003: Proceedings of the International Conference on Shape Memory and Superelastic Technologies”, Pacific Grove, California, USA, 5th–8th May, 2003, eds. Pelton A. R., and Duerig T. ASM International, Ohio, USA, 2004, pp. 519528 LINK http://www.asminternational.org/web/smst/technical/proceedings?p_p_auth=nxA6rp1Q&p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_assetEntryId=3304329&_101_type=content&_101_groupId=10192&_101_urlTitle=a-decade-of-evolution-in-stent-design [Google Scholar]
  45. Stoeckel D., Bonsignore C., and Duda S. Min. Invas. Therapy Allied Technol., 2002, 11, (4), 137 LINK http://dx.doi.org/10.1080/136457002760273340 [Google Scholar]
  46. Gong X.-Y., Pelton A. R., Duerig T. W., Rebelo N., Perry K., and Duerig T. ‘Finite Element Analysis and Experimental Evaluation of Superelastic Nitinol Stent’, in “SMST-2003: Proceedings of the International Conference on Shape Memory and Superelastic Technologies”, Pacific Grove, California, USA, 5th–8th May, 2003, eds. Pelton A. R., ASM International, Ohio, USA, 2004, pp. 453462 LINK http://www.asminternational.org/web/tss/education/dvd?p_p_auth=Z8sA7eNF&p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_assetEntryId=3304673&_101_type=content&_101_groupId=10192&_101_urlTitle=finite-element-analysis-and-experimental-evaluation-of-superelastic-nitinol-stent [Google Scholar]
  47. Schuessler A., Bayer U., Siekmeyer G., Steegmueller R., Strobel M., and Schuessler A. ‘Manufacturing of Stents: Optimize the Stent with New Manufacturing Technologies’, in 5th European Symposium of Vascular Biomaterials ESVB, Strasbourg, France, 27th April, 2007 LINK http://www.admedes.com/sites/files/admedes/files/Manufacturing_of_Stents_Optimize_the_Stent_with_New_Manufacturing_Technologies.pdf [Google Scholar]
  48. Robertson S. W., Pelton A. R., and Ritchie R. O. Int. Mater. Rev., 2012, 57, (1), 1 LINK http://dx.doi.org/10.1179/1743280411Y.0000000009 [Google Scholar]
  49. Pelton A. R., Schroeder V., Mitchell M. R., Gong X.-Y., Barney M., and Robertson S. W. J. Mech. Behaviour. Biomed. Mater., 2008, 1, (2), 153 LINK http://dx.doi.org/10.1016/j.jmbbm.2007.08.001 [Google Scholar]
  50. Mahtabi M. J., Shamsaei N., and Mitchell M. R. J. Mech. Behaviour. Biomed. Mater., 2015, 50, 228 LINK http://dx.doi.org/10.1016/j.jmbbm.2015.06.010 [Google Scholar]
  51. Trépanier C., Venugopalan R., Pelton A. R., ‘Corrosion Resistance and Biocompatibility of Passivated NiTi’, in “Shape Memory Implants”, ed. and Yahia L. Springer-Verlag, Berlin, Heidelberg, Germany, 2000, pp. 3545 LINK http://dx.doi.org/10.1007/978-3-642-59768-8 [Google Scholar]
  52. Trépanier C., Tabrizian M., L’Yahia H., Bilodeau L., and Piron D. L. J. Biomed. Mater. Res.: A, 43, (4), 1998, 433 LINK http://dx.doi.org/10.1002/(SICI)1097-4636(199824)43:4<433::AID-JBM11>3.0.CO;2-# [Google Scholar]
  53. Sullivan S. J. L., Dreher M. L., Zheng J., Chen L., Madamba D., Miyashiro K., Trépanier C., and Nagaraja S. Shape Memory Superelast., 2015, 1, (3), 319 LINK http://dx.doi.org/10.1007/s40830-015-0028-x [Google Scholar]
  54. Steegmüller R., Strobel M., Flaxmeier E., and Schüßler A. ‘Micro-Welding for Improved Radiopacity of Nitinol-Stents’, in “SMST-2004: Proceedings of the International Conference on Shape Memory and Superelastic Technologies”, Baden-Baden, Germany, 3rd–7th October, 2004, ASM International, Ohio, USA, 2004, pp. 591595 LINK http://www.asminternational.org/web/smst/events/proceedings?p_p_auth=z5U0NcXP&p_p_id=101&p_p_lifecycle=0&p_p_state=maximized&_101_struts_action=%2Fasset_publisher%2Fview_content&_101_assetEntryId=3305182&_101_type=content&_101_groupId=10192&_101_urlTitle=micro-welding-for-improved-radiopacity-of-nitinol-stents [Google Scholar]
  55. Cowley A., and Woodward B. Platinum Metals Rev., 2011, 55, (2), 98 LINK http://www.technology.matthey.com/article/55/2/98-107/ [Google Scholar]
/content/journals/10.1595/205651317X694524
Loading
/content/journals/10.1595/205651317X694524
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error