Skip to content
Volume 62, Issue 2
  • ISSN: 2056-5135


The demand for lithium is expected to increase drastically in the near future due to the increased usage of rechargeable lithium-ion batteries (LIB) in electric vehicles, smartphones and other portable electronics. To alleviate the potential risk of undersupply, lithium can be extracted from raw sources consisting of minerals and brines or from recycled batteries and glasses. Aqueous lithium mining from naturally occurring brines and salt deposits is advantageous compared to extraction from minerals, since it may be more environmentally friendly and cost-effective. In this article, we briefly discuss the adsorptive behaviour, synthetic methodology and prospects or challenges of major sorbents including spinel lithium manganese oxide (Li-Mn-O or LMO), spinel lithium titanium oxide (Li-Ti-O or LTO) and lithium aluminium layered double hydroxide chloride (LiCl·2Al(OH)). Membrane approaches and lithium recovery from end-of-life LIB will also be briefly discussed.


Article metrics loading...

Loading full text...

Full text loading...



  1. Wietelmann U., and Bauer R. J. ‘Lithium and Lithium Compounds’, in “Ullmann’s Encyclopedia of Industrial Chemistry”, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2000 LINK [Google Scholar]
  2. Somrani A., Hamzaoui A. H., and Pontie M. Desalination, 2013, 317, 184 LINK [Google Scholar]
  3. Ziemann S., Weil M., and Schebek L. Resour. Conserv. Recycl., 2012, 63, 26 LINK [Google Scholar]
  4. Grosjean C., Miranda P. H., Perrin M., and Poggi P. Renew. Sustain. Energy Rev., 2012, 16, (3), 1735 LINK [Google Scholar]
  5. Yang G., Shi H., Liu W., Xing W., and Xu N. Chin. J. Chem. Eng., 2011, 19, (4), 586 LINK [Google Scholar]
  6. Choubey P. K., Kim M., Srivastava R. R., Lee J., and Lee J.-Y. Min. Eng., 2016, 89, 119 LINK [Google Scholar]
  7. Meshram P., Pandey B. D., and Mankhand T. R. Hydrometallurgy, 2014, 150, 192 LINK [Google Scholar]
  8. An J. W., Kang D. J., Tran K. T., Kim M. J., Lim T., and Tran T. Hydrometallurgy, 2012, 117–118, 64 LINK [Google Scholar]
  9. Boryta D. A., Kullberg T. F., and Thurston A. M. Cemetall Foote Corp, ‘Production of Lithium Compounds Directly from Lithium Containing Brines’, US Patent Appl., 2011/0,123,427 [Google Scholar]
  10. Sun S.-Y., Song X., Zhang Q.-H., Wang J., and Yu J.-G. Adsorption, 2011, 17, (5), 881 LINK [Google Scholar]
  11. Ariza M. J., Jones D. J., Rozière J., Chitrakar R., and Ooi K. Chem. Mater., 2006, 18, (7), 1885 LINK [Google Scholar]
  12. Thackeray M. M., Johnson P. J., de Picciotto L. A., Bruce P. G., and Goodenough J. B. Mater. Res. Bull., 1984, 19, (2), 179 LINK [Google Scholar]
  13. Feng Q., Miyai Y., Kanoh H., and Ooi K. Langmuir, 1992, 8, (7), 1861 LINK [Google Scholar]
  14. Zhang Q.-H., Li S.-P., Sun S.-Y., Yin X.-S., and Yu J.-G. Chem. Eng. Sci., 2010, 65, (1), 169 LINK [Google Scholar]
  15. Zhang Q.-H., Sun S., Li S., Jiang H., and Yu J.-G. Chem. Eng. Sci., 2007, 62, (18–20), 4869 LINK [Google Scholar]
  16. Feng Q., Higashimoto Y., Kajiyoshi K., and Yanagisawa K. J. Mater. Sci. Lett., 2001, 20, (3), 269 LINK [Google Scholar]
  17. Özgür C. Solid State Ionics, 2010, 181, (31–32), 1425 LINK [Google Scholar]
  18. Li L., Qu W., Liu F., Zhao T., Zhang X., Chen R., and Wu F. Appl. Surf. Sci., 2014, 315, 59 LINK [Google Scholar]
  19. Chitrakar R., Makita Y., Ooi K., and Sonoda A. Chem. Lett., 2012, 41, (12), 1647 LINK [Google Scholar]
  20. Chitrakar R., Kanoh H., Miyai Y., and Ooi K. Ind. Eng. Chem. Res., 2001, 40, (9), 2054 LINK [Google Scholar]
  21. Liu L., Zhang H., Zhang Y., Cao D., and Zhao X. Colloids Surf. A: Physiochem. Eng. Aspects, 2015, 468, 280 LINK [Google Scholar]
  22. Shi X., Zhou D., Zhang Z., Yu L., Xu H., Chen B., and Yang X. Hydrometallurgy, 2011, 110, (1–4), 99 LINK [Google Scholar]
  23. Chitrakar R., Kanoh H., Miyai Y., and Ooi K. Chem. Mater., 2000, 12, (10), 3151 LINK [Google Scholar]
  24. Xiao J.-L., Sun S.-Y., Wang J., Li P., and Yu J.-G. Ind. Eng. Chem. Res., 2013, 52, (34), 11967 LINK [Google Scholar]
  25. Sun S.-Y., Xiao J.-L., Wang J., Song X., and Yu J.-G. Ind. Eng. Chem. Res., 2014, 53, (40), 15517 LINK [Google Scholar]
  26. Chitrakar R., Sakane K., Umeno A., Kasaishi S., Takagi N., and Ooi K. J. Solid State Chem., 2002, 169, (1), 66 LINK [Google Scholar]
  27. Yang X., Kanoh H., Tang W., and Ooi K. J. Mater. Chem., 2000, 10, (8), 1903 LINK [Google Scholar]
  28. Ooi K., Makita Y., Sonoda A., Chitrakar R., Tasaki-Handa Y., and Nakazato T. Chem. Eng. J., 2016, 288, 137 LINK [Google Scholar]
  29. Hong H.-J., Park I.-S., Ryu T., Ryu J., Kim B.-G., and Chung K.-S. Chem. Eng. J., 2013, 234, 16 LINK [Google Scholar]
  30. Ryu T., Haldorai Y., Rengaraj A., Shin J., Hong H.-J., Lee G.-W., Han Y.-K., Huh Y. S., and Chung K.-S. Ind. Eng. Chem. Res., 2016, 55, (26), 7218 LINK [Google Scholar]
  31. Chung K. S., Lee J. C., Kim E. J., Lee K. C., Kim Y. S., and Ooi K. Mater. Sci. Forum, 2004, 449-452, 277 LINK [Google Scholar]
  32. Miyai Y., Ooi K., Nishimura T., and Kumamoto J. Bull. Soc. Sea Water Sci., Jpn., 1994, 48, (6), 411 LINK [Google Scholar]
  33. Wang L., Ma W., Liu R., Li H. Y., and Meng C. G. Solid State Ionics, 2006, 177, (17–18), 1421 LINK [Google Scholar]
  34. Hunter J. C. J. Solid State Chem., 1981, 39, (2), 142 LINK [Google Scholar]
  35. Xiao G., Tong K., Zhou L., Xiao J., Sun S., Li P., and Yu J. Ind. Eng. Chem. Res., 2012, 51, (33), 10921 LINK [Google Scholar]
  36. Ma L.-W., Chen B.-Z., Chen Y., and Shi X.-C. Micropor. Mesopor. Mater., 2011, 142, (1), 147 LINK [Google Scholar]
  37. Chitrakar R., Kanoh H., Makita Y., Miyai Y., and Ooi K. J. Mater. Chem., 2000, 10, (10), 2325 LINK [Google Scholar]
  38. Croguennec L., Deniard P., Brec R., and Lecerf A. J. Mater. Chem., 1997, 7, (3), 511 LINK [Google Scholar]
  39. Tian L., Ma W., and Han M. Chem. Eng. J., 2010, 156, (1), 134 LINK [Google Scholar]
  40. Feng Q., Miyai Y., Kanoh H., and Ooi K. Chem. Mater., 1993, 5, (3), 311 LINK [Google Scholar]
  41. Chitrakar R., Makita Y., Ooi K., and Sonoda A. Ind. Eng. Chem. Res., 2014, 53, (9), 3682 LINK [Google Scholar]
  42. Miyai Y., Ooi K., and Katoh S. Sep. Sci. Technol., 1988, 23, (1–3), 179 LINK [Google Scholar]
  43. Chitrakar R., Makita Y., Ooi K., and Sonoda A. Dalton Trans., 2014, 43, (23), 8933 LINK [Google Scholar]
  44. Zhang L., Zhou D, He G., Wang F., and Zhou J. Mater. Lett., 2014, 135, 206 LINK [Google Scholar]
  45. Shi X., Zhang Z., Zhou D., Zhang L., Chen B., and Yu L. Trans. Nonferrous Met. Soc. China, 2013, 23, (1), 253 LINK [Google Scholar]
  46. Lawagon C. P., Nisola G. M., Mun J., Tron A., Torrejos R. E. C., Seo J. G., Kim H., and Chung W.-J. J. Ind. Eng. Chem., 2016, 35, 347 LINK [Google Scholar]
  47. Tang D., Zhou D., Zhou J., Zhang P., Zhang L., and Xia Y. Hydrometallurgy, 2015, 157, 90 LINK [Google Scholar]
  48. Wang S., Li P., Cui W., Zhang H., Wang H., Zheng S., and Zhang Y. RSC Adv., 2016, 6, (104), 102608 LINK [Google Scholar]
  49. Zhang L., Zhou D., Yao Q., and Zhou J. Appl. Surf. Sci., 2016, 368, 82 LINK [Google Scholar]
  50. Deptuła A., Brykała M., Łada W., Olczak T., Sartowska B., Chmielewski A. G., Wawszczak D., and Alvani C. Fusion Eng. Des., 2009, 84, (2–6), 681 LINK [Google Scholar]
  51. Yu C.-L., Wang F., Cao S.-Y., Gao D.-P., Hui H.-B., Guo Y.-Y., and Wang D.-Y. Dalton Trans., 2015, 44, (35), 15721 LINK [Google Scholar]
  52. He G., Zhang L., Zhou D., Zou Y., and Wang F. Ionics, 2015, 21, (8), 2219 LINK [Google Scholar]
  53. Limjuco L. A., Nisola G. M., Lawagon C. P., Lee S.-P., Seo J. G., Kim H., and Chung W.-J. Colloids Surf. A: Physiochem. Eng. Aspects, 2016, 504, 267 LINK [Google Scholar]
  54. Zhu G.-N., Wang Y.-G., and Xia Y.-Y. Energy Environ. Sci., 2012, 5, (5), 6652 LINK [Google Scholar]
  55. Thiel J. P., Chiang C. K., and Poeppelmeier K. R. Chem. Mater., 1993, 5, (3), 297 LINK [Google Scholar]
  56. Fogg A. M., Freij A. J., and Parkinson G. M. Chem. Mater., 2002, 14, (1), 232 LINK [Google Scholar]
  57. Besserguenev A. V., Fogg A. M., Francis R. J., Price S. J., O’Hare D., Isupov V. P., and Tolochko B. P. Chem. Mater., 1997, 9, (1), 241 LINK [Google Scholar]
  58. Fogg A. M., and O’Hare D. Chem. Mater., 1999, 11, (7), 1771 LINK [Google Scholar]
  59. Williams G. R., and O’Hare D. J. Phys. Chem. B, 2006, 110, (22), 10619 LINK [Google Scholar]
  60. Wang S.-L., Lin C.-H., Yan Y.-Y., and Wang M. K. Appl. Clay Sci., 2013, 72, 191 LINK [Google Scholar]
  61. Qu J., He X., Wang B., Zhong L., Wan L., Li X., Song S., and Zhang Q. Appl. Clay Sci., 2016, 120, 24 LINK [Google Scholar]
  62. Lee J. M., and Bauman W. C. The Dow Chemical Company, ‘Recovery of Lithium from Brines’, US Patent Appl. 1979/4,159,311 [Google Scholar]
  63. Bauman W. C., and Burba J. L. III FMC Corp, ‘Composition for the Recovery of Lithium Values from Brine and Process of Making/Using Said Composition’, US Patent, 6,280,693; 2001 [Google Scholar]
  64. Kotsupalo N. P., Ryabtsev A. D., Poroshina I. A., Kurakov A. A., Mamylova E. V., Menzheres L. T., and Korchagin M. A. Russ. J. Appl. Chem., 2013, 86, (4), 482 LINK [Google Scholar]
  65. Burba J. L. III, Stewart R. F., Viani B. E., Harrison S., Vogdes C. E., and Lahlouh J. G. S. Simbol Inc, ‘Improved Sorbent for Lithium Extraction’, World Patent Appl., 2015/171,109 [Google Scholar]
  66. Wen X., Ma P., Zhu C., He Q., and Deng X. Sep. Purif. Technol., 2006, 49, (3), 230 LINK [Google Scholar]
  67. Bi Q., Zhang Z., Zhao C., and Tao Z. Water Sci. Technol., 2014, 70, (10), 1690 LINK [Google Scholar]
  68. Sun S.-Y., Cai L.-J., Nie X.-Y., Song X., and Yu J.-G. J. Water Process Eng., 2015, 7, 210 LINK [Google Scholar]
  69. Li W., Shi C., Zhou A., He X., Sun Y., and Zhang J. Sep. Purif. Technol., 2017, 186, 233 LINK [Google Scholar]
  70. Zhao Z., Si X., Liu X., He L., and Liang X. Hydrometallurgy, 2013, 133, 75 LINK [Google Scholar]
  71. Liu X., Chen X., Zhao Z., and Liang X. Hydrometallurgy, 2014, 146, 24 LINK [Google Scholar]
  72. Liu X., Chen X., He L., and Zhao Z. Desalination, 2015, 376, 35 LINK [Google Scholar]
  73. Hoshino T. Fusion Eng. Des., 2013, 88, (11), 2956 LINK [Google Scholar]
  74. Hoshino T. Desalination, 2015, 359, 59 LINK [Google Scholar]
  75. Hoshino T. Desalination, 2013, 317, 11 LINK [Google Scholar]
  76. Ji Z., Chen Q., Yuan J., Liu J., Zhao Y., and Feng W. Sep. Purif. Technol., 2017, 172, 168 LINK [Google Scholar]
  77. Ma P., Chen X. D., and Hossain M. M. Sep. Sci. Technol., 2000, 35, (15), 2513 LINK [Google Scholar]
  78. Xing L., Song J., Li Z., Liu J., Huang T., Dou P., Chen Y., Li X.-M., and He T. J. Membrane Sci., 2016, 520, 596 LINK [Google Scholar]
  79. Song J., Li X.-M., Zhang Y., Yin Y., Zhao B., Li C., Kong D., and He T. J. Membrane Sci., 2014, 471, 372 LINK [Google Scholar]
  80. Guo Y., Ying Y., Mao Y., Peng X., and Chen B. Angew. Chem., 2016, 128, (48), 15344 LINK [Google Scholar]
  81. Umeno A., Miyai Y., Takagi N., Chitrakar R., Sakane K., and Ooi K. Ind. Eng. Chem. Res., 2002, 41, (17), 4281 LINK [Google Scholar]
  82. Chung K.-S., Lee J.-C., Kim W.-K., Kim S. B., and Cho K. Y. J. Membrane Sci., 2008, 325, (2), 503 LINK [Google Scholar]
  83. Chung W.-J., Torrejos R. E. C., Park M. J., Vivas E. L., Limjuco L. A., Lawagon C. P., Parohinog K. J., Lee S.-P., Shon H. K., Kim H., and Nisola G. M. Chem. Eng. J., 2017, 309, 49 LINK [Google Scholar]
  84. Park M. J., Nisola G. M., Vivas E. L., Limjuco L. A., Lawagon C. P., Seo J. G., Kim H., Shon H. K., and Chung W.-J. J. Membrane Sci., 2016, 510, 141 LINK [Google Scholar]
  85. Bhave R., Deshmane V., and Kim D. ‘Selective Recovery of Lithium from Geothermal Brine Using Novel Mixed Matrix Membranes Supported on Hollow Fiber and Inorganic Supports’, 2018, in preparation [Google Scholar]
  86. Epstein J. A., Feist E. M., Zmora J., and Marcus Y. Hydrometallurgy, 1981, 6, (3–4), 269 LINK [Google Scholar]
  87. Lee D. A., Taylor W. L., McDowell W. J., and Drury J. S. J. Inorg. Nucl. Chem., 1968, 30, (10), 2807 LINK [Google Scholar]
  88. Shi C., Jing Y., and Jia Y. J. Mol. Liq., 2016, 215, 640 LINK [Google Scholar]
  89. Shi C., Jing Y., and Jia Y. Russ. J. Phys. Chem.A, 2017, 91, (4), 692 LINK [Google Scholar]
  90. El-Eswed B., Sunjuk M., Al-Degs Y. S., and Shtaiwi A. Separ. Sci. Technol., 2014, 49, (9), 1342 LINK [Google Scholar]
  91. Pinna E. G., Ruiz M. C., Ojeda M. W., and Rodriguez M. H. Hydrometallurgy, 2017, 167, 66 LINK [Google Scholar]
  92. Nayaka G. P., Manjanna J., Pai K. V., Vadavi R., Keny S. J., and Tripathi V. S. Hydrometallurgy, 2015, 151, 73 LINK [Google Scholar]
  93. Joulié M., Billy E., Laucournet R., and Meyer D. Hydrometallurgy, 2017, 169, 426 LINK [Google Scholar]
  94. Joo S.-H., ju Shin D., Oh C., Wang J.-P., Senanayake G., and Shin S. M. Hydrometallurgy, 2016, 159, 65 LINK [Google Scholar]
  95. Lee C. K., and Rhee K.-I. J. Power Sources, 2002, 109, (1), 17 LINK [Google Scholar]
  96. Xu J., Thomas H. R., Francis R. W., Lum K. R., Wang J., and Liang B. J. Power Sources, 2008, 177, (2), 512 LINK [Google Scholar]
  97. Contestabile M., Panero S., and Scrosati B. J. Power Sources, 2001, 92, (1–2), 65 LINK [Google Scholar]
  98. Castillo S., Ansart F., Laberty-Robert C., and Portal J. J. Power Sources, 2002, 112, (1), 247 LINK [Google Scholar]
  99. Espinosa D. C. R., Bernardes A. M., and Tenório J. A. S. J. Power Sources, 2004, 135, (1–2), 311 LINK [Google Scholar]
  100. Zhang P., Yokoyama T., Itabashi O., Suzuki T. M., and Inoue K. Hydrometallurgy, 1998, 47, (2–3), 259 LINK [Google Scholar]
  101. Li L., Ge J., Wu F., Chen R., Chen S., and Wu B. J. Hazard. Mater., 2010, 176, (1–3), 288 LINK [Google Scholar]
  102. Nan J., Han D., and Zuo X. J. Power Sources, 2005, 152, 278 LINK [Google Scholar]
  103. Swain B., Jeong J., Lee J., Lee G.-H., and Sohn J.-S. J. Power Sources, 2007, 167, (2), 536 LINK [Google Scholar]
  104. Ordoñez J., Gago E. J., and Girard A. Renew. Sustain. Energy Rev., 2016, 60, 195 LINK [Google Scholar]
  105. Guo Y., Li F., Zhu H., Li G., Huang J., and He W. Waste Manage., 2016, 51, 227 LINK [Google Scholar]
  106. Barik S. P., Prabaharan G., and Kumar B. Waste Manage., 2016, 51, 222 LINK [Google Scholar]
  107. Chen X., Ma H., Luo C., and Zhou T. J. Hazard. Mater., 2017, 326, 77 LINK [Google Scholar]
  108. He L.-P., Sun S.-Y., Song X.-F., and Yu J.-G. Waste Manage., 2017, 64, 171 LINK [Google Scholar]
  109. Li L., Fan E., Guan Y., Zhang X., Xue Q., Wei L., Wu F., and Chen R. ACS Sustainable Chem. Eng., 2017, 5, (6), 5224 LINK [Google Scholar]
  110. Xiao J., Li J., and Xu Z. Environ. Sci. Technol., 2017, 51, (20), 11960 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error