Skip to content
1887
Volume 62, Issue 2
  • ISSN: 2056-5135

Abstract

The demand for lithium is expected to increase drastically in the near future due to the increased usage of rechargeable lithium-ion batteries (LIB) in electric vehicles, smartphones and other portable electronics. To alleviate the potential risk of undersupply, lithium can be extracted from raw sources consisting of minerals and brines or from recycled batteries and glasses. Aqueous lithium mining from naturally occurring brines and salt deposits is advantageous compared to extraction from minerals, since it may be more environmentally friendly and cost-effective. In this article, we briefly discuss the adsorptive behaviour, synthetic methodology and prospects or challenges of major sorbents including spinel lithium manganese oxide (Li-Mn-O or LMO), spinel lithium titanium oxide (Li-Ti-O or LTO) and lithium aluminium layered double hydroxide chloride (LiCl·2Al(OH)). Membrane approaches and lithium recovery from end-of-life LIB will also be briefly discussed.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X696676
2018-01-01
2024-03-01
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/2/Moyer_16a_Imp.html?itemId=/content/journals/10.1595/205651317X696676&mimeType=html&fmt=ahah

References

  1. Wietelmann U., and Bauer R. J. ‘Lithium and Lithium Compounds’, in “Ullmann’s Encyclopedia of Industrial Chemistry”, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2000 LINK https://doi.org/10.1002/14356007.a15_393 [Google Scholar]
  2. Somrani A., Hamzaoui A. H., and Pontie M. Desalination, 2013, 317, 184 LINK https://doi.org/10.1016/j.desal.2013.03.009 [Google Scholar]
  3. Ziemann S., Weil M., and Schebek L. Resour. Conserv. Recycl., 2012, 63, 26 LINK https://doi.org/10.1016/j.resconrec.2012.04.002 [Google Scholar]
  4. Grosjean C., Miranda P. H., Perrin M., and Poggi P. Renew. Sustain. Energy Rev., 2012, 16, (3), 1735 LINK https://doi.org/10.1016/j.rser.2011.11.023 [Google Scholar]
  5. Yang G., Shi H., Liu W., Xing W., and Xu N. Chin. J. Chem. Eng., 2011, 19, (4), 586 LINK https://doi.org/10.1016/S1004-9541(11)60026-8 [Google Scholar]
  6. Choubey P. K., Kim M., Srivastava R. R., Lee J., and Lee J.-Y. Min. Eng., 2016, 89, 119 LINK https://doi.org/10.1016/j.mineng.2016.01.010 [Google Scholar]
  7. Meshram P., Pandey B. D., and Mankhand T. R. Hydrometallurgy, 2014, 150, 192 LINK https://doi.org/10.1016/j.hydromet.2014.10.012 [Google Scholar]
  8. An J. W., Kang D. J., Tran K. T., Kim M. J., Lim T., and Tran T. Hydrometallurgy, 2012, 117–118, 64 LINK https://doi.org/10.1016/j.hydromet.2012.02.008 [Google Scholar]
  9. Boryta D. A., Kullberg T. F., and Thurston A. M. Cemetall Foote Corp, ‘Production of Lithium Compounds Directly from Lithium Containing Brines’, US Patent Appl., 2011/0,123,427 [Google Scholar]
  10. Sun S.-Y., Song X., Zhang Q.-H., Wang J., and Yu J.-G. Adsorption, 2011, 17, (5), 881 LINK https://doi.org/10.1007/s10450-011-9356-0 [Google Scholar]
  11. Ariza M. J., Jones D. J., Rozière J., Chitrakar R., and Ooi K. Chem. Mater., 2006, 18, (7), 1885 LINK https://doi.org/10.1021/cm052214r [Google Scholar]
  12. Thackeray M. M., Johnson P. J., de Picciotto L. A., Bruce P. G., and Goodenough J. B. Mater. Res. Bull., 1984, 19, (2), 179 LINK https://doi.org/10.1016/0025-5408(84)90088-6 [Google Scholar]
  13. Feng Q., Miyai Y., Kanoh H., and Ooi K. Langmuir, 1992, 8, (7), 1861 LINK https://doi.org/10.1021/la00043a029 [Google Scholar]
  14. Zhang Q.-H., Li S.-P., Sun S.-Y., Yin X.-S., and Yu J.-G. Chem. Eng. Sci., 2010, 65, (1), 169 LINK https://doi.org/10.1016/j.ces.2009.06.045 [Google Scholar]
  15. Zhang Q.-H., Sun S., Li S., Jiang H., and Yu J.-G. Chem. Eng. Sci., 2007, 62, (18–20), 4869 LINK https://doi.org/10.1016/j.ces.2007.01.016 [Google Scholar]
  16. Feng Q., Higashimoto Y., Kajiyoshi K., and Yanagisawa K. J. Mater. Sci. Lett., 2001, 20, (3), 269 LINK https://doi.org/10.1023/A:1006757825786 [Google Scholar]
  17. Özgür C. Solid State Ionics, 2010, 181, (31–32), 1425 LINK https://doi.org/10.1016/j.ssi.2010.08.001 [Google Scholar]
  18. Li L., Qu W., Liu F., Zhao T., Zhang X., Chen R., and Wu F. Appl. Surf. Sci., 2014, 315, 59 LINK https://doi.org/10.1016/j.apsusc.2014.07.090 [Google Scholar]
  19. Chitrakar R., Makita Y., Ooi K., and Sonoda A. Chem. Lett., 2012, 41, (12), 1647 LINK https://doi.org/10.1246/cl.2012.1647 [Google Scholar]
  20. Chitrakar R., Kanoh H., Miyai Y., and Ooi K. Ind. Eng. Chem. Res., 2001, 40, (9), 2054 LINK https://doi.org/10.1021/ie000911h [Google Scholar]
  21. Liu L., Zhang H., Zhang Y., Cao D., and Zhao X. Colloids Surf. A: Physiochem. Eng. Aspects, 2015, 468, 280 LINK https://doi.org/10.1016/j.colsurfa.2014.12.025 [Google Scholar]
  22. Shi X., Zhou D., Zhang Z., Yu L., Xu H., Chen B., and Yang X. Hydrometallurgy, 2011, 110, (1–4), 99 LINK https://doi.org/10.1016/j.hydromet.2011.09.004 [Google Scholar]
  23. Chitrakar R., Kanoh H., Miyai Y., and Ooi K. Chem. Mater., 2000, 12, (10), 3151 LINK https://doi.org/10.1021/cm0000191 [Google Scholar]
  24. Xiao J.-L., Sun S.-Y., Wang J., Li P., and Yu J.-G. Ind. Eng. Chem. Res., 2013, 52, (34), 11967 LINK https://doi.org/10.1021/ie400691d [Google Scholar]
  25. Sun S.-Y., Xiao J.-L., Wang J., Song X., and Yu J.-G. Ind. Eng. Chem. Res., 2014, 53, (40), 15517 LINK https://doi.org/10.1021/ie5004625 [Google Scholar]
  26. Chitrakar R., Sakane K., Umeno A., Kasaishi S., Takagi N., and Ooi K. J. Solid State Chem., 2002, 169, (1), 66 LINK https://doi.org/10.1016/S0022-4596(02)00018-X [Google Scholar]
  27. Yang X., Kanoh H., Tang W., and Ooi K. J. Mater. Chem., 2000, 10, (8), 1903 LINK http://dx.doi.org/10.1039/B000219O [Google Scholar]
  28. Ooi K., Makita Y., Sonoda A., Chitrakar R., Tasaki-Handa Y., and Nakazato T. Chem. Eng. J., 2016, 288, 137 LINK https://doi.org/10.1016/j.cej.2015.11.092 [Google Scholar]
  29. Hong H.-J., Park I.-S., Ryu T., Ryu J., Kim B.-G., and Chung K.-S. Chem. Eng. J., 2013, 234, 16 LINK https://doi.org/10.1016/j.cej.2013.08.060 [Google Scholar]
  30. Ryu T., Haldorai Y., Rengaraj A., Shin J., Hong H.-J., Lee G.-W., Han Y.-K., Huh Y. S., and Chung K.-S. Ind. Eng. Chem. Res., 2016, 55, (26), 7218 LINK https://doi.org/10.1021/acs.iecr.6b01632 [Google Scholar]
  31. Chung K. S., Lee J. C., Kim E. J., Lee K. C., Kim Y. S., and Ooi K. Mater. Sci. Forum, 2004, 449-452, 277 LINK https://doi.org/10.4028/www.scientific.net/MSF.449-452.277 [Google Scholar]
  32. Miyai Y., Ooi K., Nishimura T., and Kumamoto J. Bull. Soc. Sea Water Sci., Jpn., 1994, 48, (6), 411 LINK https://doi.org/10.11457/swsj1965.48.411LINK https://www.jstage.jst.go.jp/article/swsj1965/48/6/48_411/_article/-char/en [Google Scholar]
  33. Wang L., Ma W., Liu R., Li H. Y., and Meng C. G. Solid State Ionics, 2006, 177, (17–18), 1421 LINK https://doi.org/10.1016/j.ssi.2006.07.019 [Google Scholar]
  34. Hunter J. C. J. Solid State Chem., 1981, 39, (2), 142 LINK https://doi.org/10.1016/0022-4596(81)90323-6 [Google Scholar]
  35. Xiao G., Tong K., Zhou L., Xiao J., Sun S., Li P., and Yu J. Ind. Eng. Chem. Res., 2012, 51, (33), 10921 LINK https://doi.org/10.1021/ie300087s [Google Scholar]
  36. Ma L.-W., Chen B.-Z., Chen Y., and Shi X.-C. Micropor. Mesopor. Mater., 2011, 142, (1), 147 LINK https://doi.org/10.1016/j.micromeso.2010.11.028 [Google Scholar]
  37. Chitrakar R., Kanoh H., Makita Y., Miyai Y., and Ooi K. J. Mater. Chem., 2000, 10, (10), 2325 LINK https://doi.org/10.1039/B002465L [Google Scholar]
  38. Croguennec L., Deniard P., Brec R., and Lecerf A. J. Mater. Chem., 1997, 7, (3), 511 LINK https://doi.org/10.1039/A604947H [Google Scholar]
  39. Tian L., Ma W., and Han M. Chem. Eng. J., 2010, 156, (1), 134 LINK https://doi.org/10.1016/j.cej.2009.10.008 [Google Scholar]
  40. Feng Q., Miyai Y., Kanoh H., and Ooi K. Chem. Mater., 1993, 5, (3), 311 LINK https://doi.org/10.1021/cm00027a013 [Google Scholar]
  41. Chitrakar R., Makita Y., Ooi K., and Sonoda A. Ind. Eng. Chem. Res., 2014, 53, (9), 3682 LINK https://doi.org/10.1021/ie4043642 [Google Scholar]
  42. Miyai Y., Ooi K., and Katoh S. Sep. Sci. Technol., 1988, 23, (1–3), 179 LINK https://doi.org/10.1080/01496398808057641 [Google Scholar]
  43. Chitrakar R., Makita Y., Ooi K., and Sonoda A. Dalton Trans., 2014, 43, (23), 8933 LINK https://doi.org/10.1039/C4DT00467A [Google Scholar]
  44. Zhang L., Zhou D, He G., Wang F., and Zhou J. Mater. Lett., 2014, 135, 206 LINK https://doi.org/10.1016/j.matlet.2014.07.176 [Google Scholar]
  45. Shi X., Zhang Z., Zhou D., Zhang L., Chen B., and Yu L. Trans. Nonferrous Met. Soc. China, 2013, 23, (1), 253 LINK https://doi.org/10.1016/S1003-6326(13)62453-X [Google Scholar]
  46. Lawagon C. P., Nisola G. M., Mun J., Tron A., Torrejos R. E. C., Seo J. G., Kim H., and Chung W.-J. J. Ind. Eng. Chem., 2016, 35, 347 LINK https://doi.org/10.1016/j.jiec.2016.01.015 [Google Scholar]
  47. Tang D., Zhou D., Zhou J., Zhang P., Zhang L., and Xia Y. Hydrometallurgy, 2015, 157, 90 LINK https://doi.org/10.1016/j.hydromet.2015.07.009 [Google Scholar]
  48. Wang S., Li P., Cui W., Zhang H., Wang H., Zheng S., and Zhang Y. RSC Adv., 2016, 6, (104), 102608 LINK https://doi.org/10.1039/C6RA18018C [Google Scholar]
  49. Zhang L., Zhou D., Yao Q., and Zhou J. Appl. Surf. Sci., 2016, 368, 82 LINK https://doi.org/10.1016/j.apsusc.2016.01.203 [Google Scholar]
  50. Deptuła A., Brykała M., Łada W., Olczak T., Sartowska B., Chmielewski A. G., Wawszczak D., and Alvani C. Fusion Eng. Des., 2009, 84, (2–6), 681 LINK https://doi.org/10.1016/j.fusengdes.2008.12.077 [Google Scholar]
  51. Yu C.-L., Wang F., Cao S.-Y., Gao D.-P., Hui H.-B., Guo Y.-Y., and Wang D.-Y. Dalton Trans., 2015, 44, (35), 15721 LINK https://doi.org/10.1039/C4DT03689A [Google Scholar]
  52. He G., Zhang L., Zhou D., Zou Y., and Wang F. Ionics, 2015, 21, (8), 2219 LINK https://doi.org/10.1007/s11581-015-1393-3 [Google Scholar]
  53. Limjuco L. A., Nisola G. M., Lawagon C. P., Lee S.-P., Seo J. G., Kim H., and Chung W.-J. Colloids Surf. A: Physiochem. Eng. Aspects, 2016, 504, 267 LINK https://doi.org/10.1016/j.colsurfa.2016.05.072 [Google Scholar]
  54. Zhu G.-N., Wang Y.-G., and Xia Y.-Y. Energy Environ. Sci., 2012, 5, (5), 6652 LINK https://doi.org/10.1039/C2EE03410G [Google Scholar]
  55. Thiel J. P., Chiang C. K., and Poeppelmeier K. R. Chem. Mater., 1993, 5, (3), 297 LINK https://doi.org/10.1021/cm00027a011 [Google Scholar]
  56. Fogg A. M., Freij A. J., and Parkinson G. M. Chem. Mater., 2002, 14, (1), 232 LINK https://doi.org/10.1021/cm0105099 [Google Scholar]
  57. Besserguenev A. V., Fogg A. M., Francis R. J., Price S. J., O’Hare D., Isupov V. P., and Tolochko B. P. Chem. Mater., 1997, 9, (1), 241 LINK https://doi.org/10.1021/cm960316z [Google Scholar]
  58. Fogg A. M., and O’Hare D. Chem. Mater., 1999, 11, (7), 1771 LINK https://doi.org/10.1021/cm981151s [Google Scholar]
  59. Williams G. R., and O’Hare D. J. Phys. Chem. B, 2006, 110, (22), 10619 LINK https://doi.org/10.1021/jp057130k [Google Scholar]
  60. Wang S.-L., Lin C.-H., Yan Y.-Y., and Wang M. K. Appl. Clay Sci., 2013, 72, 191 LINK https://doi.org/10.1016/j.clay.2013.02.001 [Google Scholar]
  61. Qu J., He X., Wang B., Zhong L., Wan L., Li X., Song S., and Zhang Q. Appl. Clay Sci., 2016, 120, 24 LINK https://doi.org/10.1016/j.clay.2015.11.017 [Google Scholar]
  62. Lee J. M., and Bauman W. C. The Dow Chemical Company, ‘Recovery of Lithium from Brines’, US Patent Appl. 1979/4,159,311 [Google Scholar]
  63. Bauman W. C., and Burba J. L. III FMC Corp, ‘Composition for the Recovery of Lithium Values from Brine and Process of Making/Using Said Composition’, US Patent, 6,280,693; 2001 [Google Scholar]
  64. Kotsupalo N. P., Ryabtsev A. D., Poroshina I. A., Kurakov A. A., Mamylova E. V., Menzheres L. T., and Korchagin M. A. Russ. J. Appl. Chem., 2013, 86, (4), 482 LINK https://doi.org/10.1134/S1070427213040046 [Google Scholar]
  65. Burba J. L. III, Stewart R. F., Viani B. E., Harrison S., Vogdes C. E., and Lahlouh J. G. S. Simbol Inc, ‘Improved Sorbent for Lithium Extraction’, World Patent Appl., 2015/171,109 [Google Scholar]
  66. Wen X., Ma P., Zhu C., He Q., and Deng X. Sep. Purif. Technol., 2006, 49, (3), 230 LINK https://doi.org/10.1016/j.seppur.2005.10.004 [Google Scholar]
  67. Bi Q., Zhang Z., Zhao C., and Tao Z. Water Sci. Technol., 2014, 70, (10), 1690 LINK https://doi.org/10.2166/wst.2014.426 [Google Scholar]
  68. Sun S.-Y., Cai L.-J., Nie X.-Y., Song X., and Yu J.-G. J. Water Process Eng., 2015, 7, 210 LINK https://doi.org/10.1016/j.jwpe.2015.06.012 [Google Scholar]
  69. Li W., Shi C., Zhou A., He X., Sun Y., and Zhang J. Sep. Purif. Technol., 2017, 186, 233 LINK https://doi.org/10.1016/j.seppur.2017.05.044 [Google Scholar]
  70. Zhao Z., Si X., Liu X., He L., and Liang X. Hydrometallurgy, 2013, 133, 75 LINK https://doi.org/10.1016/j.hydromet.2012.11.013 [Google Scholar]
  71. Liu X., Chen X., Zhao Z., and Liang X. Hydrometallurgy, 2014, 146, 24 LINK https://doi.org/10.1016/j.hydromet.2014.03.010 [Google Scholar]
  72. Liu X., Chen X., He L., and Zhao Z. Desalination, 2015, 376, 35 LINK https://doi.org/10.1016/j.desal.2015.08.013 [Google Scholar]
  73. Hoshino T. Fusion Eng. Des., 2013, 88, (11), 2956 LINK https://doi.org/10.1016/j.fusengdes.2013.06.009 [Google Scholar]
  74. Hoshino T. Desalination, 2015, 359, 59 LINK https://doi.org/10.1016/j.desal.2014.12.018 [Google Scholar]
  75. Hoshino T. Desalination, 2013, 317, 11 LINK https://doi.org/10.1016/j.desal.2013.02.014 [Google Scholar]
  76. Ji Z., Chen Q., Yuan J., Liu J., Zhao Y., and Feng W. Sep. Purif. Technol., 2017, 172, 168 LINK https://doi.org/10.1016/j.seppur.2016.08.006 [Google Scholar]
  77. Ma P., Chen X. D., and Hossain M. M. Sep. Sci. Technol., 2000, 35, (15), 2513 LINK https://doi.org/10.1081/SS-100102353 [Google Scholar]
  78. Xing L., Song J., Li Z., Liu J., Huang T., Dou P., Chen Y., Li X.-M., and He T. J. Membrane Sci., 2016, 520, 596 LINK https://doi.org/10.1016/j.memsci.2016.08.027 [Google Scholar]
  79. Song J., Li X.-M., Zhang Y., Yin Y., Zhao B., Li C., Kong D., and He T. J. Membrane Sci., 2014, 471, 372 LINK https://doi.org/10.1016/j.memsci.2014.08.010 [Google Scholar]
  80. Guo Y., Ying Y., Mao Y., Peng X., and Chen B. Angew. Chem., 2016, 128, (48), 15344 LINK https://doi.org/10.1002/ange.201607329 [Google Scholar]
  81. Umeno A., Miyai Y., Takagi N., Chitrakar R., Sakane K., and Ooi K. Ind. Eng. Chem. Res., 2002, 41, (17), 4281 LINK https://doi.org/10.1021/ie010847j [Google Scholar]
  82. Chung K.-S., Lee J.-C., Kim W.-K., Kim S. B., and Cho K. Y. J. Membrane Sci., 2008, 325, (2), 503 LINK https://doi.org/10.1016/j.memsci.2008.09.041 [Google Scholar]
  83. Chung W.-J., Torrejos R. E. C., Park M. J., Vivas E. L., Limjuco L. A., Lawagon C. P., Parohinog K. J., Lee S.-P., Shon H. K., Kim H., and Nisola G. M. Chem. Eng. J., 2017, 309, 49 LINK https://doi.org/10.1016/j.cej.2016.09.133 [Google Scholar]
  84. Park M. J., Nisola G. M., Vivas E. L., Limjuco L. A., Lawagon C. P., Seo J. G., Kim H., Shon H. K., and Chung W.-J. J. Membrane Sci., 2016, 510, 141 LINK https://doi.org/10.1016/j.memsci.2016.02.062 [Google Scholar]
  85. Bhave R., Deshmane V., and Kim D. ‘Selective Recovery of Lithium from Geothermal Brine Using Novel Mixed Matrix Membranes Supported on Hollow Fiber and Inorganic Supports’, 2018, in preparation [Google Scholar]
  86. Epstein J. A., Feist E. M., Zmora J., and Marcus Y. Hydrometallurgy, 1981, 6, (3–4), 269 LINK https://doi.org/10.1016/0304-386X(81)90044-X [Google Scholar]
  87. Lee D. A., Taylor W. L., McDowell W. J., and Drury J. S. J. Inorg. Nucl. Chem., 1968, 30, (10), 2807 LINK https://doi.org/10.1016/0022-1902(68)80410-5 [Google Scholar]
  88. Shi C., Jing Y., and Jia Y. J. Mol. Liq., 2016, 215, 640 LINK https://doi.org/10.1016/j.molliq.2016.01.025 [Google Scholar]
  89. Shi C., Jing Y., and Jia Y. Russ. J. Phys. Chem.A, 2017, 91, (4), 692 LINK https://doi.org/10.1134/S0036024417040033 [Google Scholar]
  90. El-Eswed B., Sunjuk M., Al-Degs Y. S., and Shtaiwi A. Separ. Sci. Technol., 2014, 49, (9), 1342 LINK https://doi.org/10.1080/01496395.2013.879665 [Google Scholar]
  91. Pinna E. G., Ruiz M. C., Ojeda M. W., and Rodriguez M. H. Hydrometallurgy, 2017, 167, 66 LINK https://doi.org/10.1016/j.hydromet.2016.10.024 [Google Scholar]
  92. Nayaka G. P., Manjanna J., Pai K. V., Vadavi R., Keny S. J., and Tripathi V. S. Hydrometallurgy, 2015, 151, 73 LINK https://doi.org/10.1016/j.hydromet.2014.11.006 [Google Scholar]
  93. Joulié M., Billy E., Laucournet R., and Meyer D. Hydrometallurgy, 2017, 169, 426 LINK https://doi.org/10.1016/j.hydromet.2017.02.010 [Google Scholar]
  94. Joo S.-H., ju Shin D., Oh C., Wang J.-P., Senanayake G., and Shin S. M. Hydrometallurgy, 2016, 159, 65 LINK https://doi.org/10.1016/j.hydromet.2015.10.012 [Google Scholar]
  95. Lee C. K., and Rhee K.-I. J. Power Sources, 2002, 109, (1), 17 LINK https://doi.org/10.1016/S0378-7753(02)00037-X [Google Scholar]
  96. Xu J., Thomas H. R., Francis R. W., Lum K. R., Wang J., and Liang B. J. Power Sources, 2008, 177, (2), 512 LINK https://doi.org/10.1016/j.jpowsour.2007.11.074 [Google Scholar]
  97. Contestabile M., Panero S., and Scrosati B. J. Power Sources, 2001, 92, (1–2), 65 LINK https://doi.org/10.1016/S0378-7753(00)00523-1 [Google Scholar]
  98. Castillo S., Ansart F., Laberty-Robert C., and Portal J. J. Power Sources, 2002, 112, (1), 247 LINK https://doi.org/10.1016/S0378-7753(02)00361-0 [Google Scholar]
  99. Espinosa D. C. R., Bernardes A. M., and Tenório J. A. S. J. Power Sources, 2004, 135, (1–2), 311 LINK https://doi.org/10.1016/j.jpowsour.2004.03.083 [Google Scholar]
  100. Zhang P., Yokoyama T., Itabashi O., Suzuki T. M., and Inoue K. Hydrometallurgy, 1998, 47, (2–3), 259 LINK https://doi.org/10.1016/S0304-386X(97)00050-9 [Google Scholar]
  101. Li L., Ge J., Wu F., Chen R., Chen S., and Wu B. J. Hazard. Mater., 2010, 176, (1–3), 288 LINK https://doi.org/10.1016/j.jhazmat.2009.11.026 [Google Scholar]
  102. Nan J., Han D., and Zuo X. J. Power Sources, 2005, 152, 278 LINK https://doi.org/10.1016/j.jpowsour.2005.03.134 [Google Scholar]
  103. Swain B., Jeong J., Lee J., Lee G.-H., and Sohn J.-S. J. Power Sources, 2007, 167, (2), 536 LINK https://doi.org/10.1016/j.jpowsour.2007.02.046 [Google Scholar]
  104. Ordoñez J., Gago E. J., and Girard A. Renew. Sustain. Energy Rev., 2016, 60, 195 LINK https://doi.org/10.1016/j.rser.2015.12.363 [Google Scholar]
  105. Guo Y., Li F., Zhu H., Li G., Huang J., and He W. Waste Manage., 2016, 51, 227 LINK https://doi.org/10.1016/j.wasman.2015.11.036 [Google Scholar]
  106. Barik S. P., Prabaharan G., and Kumar B. Waste Manage., 2016, 51, 222 LINK https://doi.org/10.1016/j.wasman.2015.11.004 [Google Scholar]
  107. Chen X., Ma H., Luo C., and Zhou T. J. Hazard. Mater., 2017, 326, 77 LINK https://doi.org/10.1016/j.jhazmat.2016.12.021 [Google Scholar]
  108. He L.-P., Sun S.-Y., Song X.-F., and Yu J.-G. Waste Manage., 2017, 64, 171 LINK https://doi.org/10.1016/j.wasman.2017.02.011 [Google Scholar]
  109. Li L., Fan E., Guan Y., Zhang X., Xue Q., Wei L., Wu F., and Chen R. ACS Sustainable Chem. Eng., 2017, 5, (6), 5224 LINK https://doi.org/10.1021/acssuschemeng.7b00571 [Google Scholar]
  110. Xiao J., Li J., and Xu Z. Environ. Sci. Technol., 2017, 51, (20), 11960 LINK https://doi.org/10.1021/acs.est.7b02561 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651317X696676
Loading
/content/journals/10.1595/205651317X696676
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error