Skip to content
1887
Volume 62, Issue 2
  • ISSN: 2056-5135
  • oa Lithium Recovery from Aqueous Resources and Batteries: A Brief Review

    A review of the methods to produce lithium and approaches to recycling from end-of-life lithium-ion batteries

  • Authors: Ling Li1, Vishwanath G. Deshmane2, M. Parans Paranthaman1, Ramesh Bhave2, Bruce A. Moyer1 and Stephen Harrison3
  • Affiliations: 1 Chemical Sciences Division, Oak Ridge National LaboratoryOak Ridge, Tennessee 37831USA 2 Materials Science and Technology Division, Oak Ridge National LaboratoryOak Ridge, Tennessee 37831USA 3 Alger Alternative Energy LLCBrawley, California 92227USA
  • Source: Johnson Matthey Technology Review, Volume 62, Issue 2, Apr 2018, p. 161 - 176
  • DOI: https://doi.org/10.1595/205651317X696676
    • Published online: 01 Jan 2018

Abstract

The demand for lithium is expected to increase drastically in the near future due to the increased usage of rechargeable lithium-ion batteries (LIB) in electric vehicles, smartphones and other portable electronics. To alleviate the potential risk of undersupply, lithium can be extracted from raw sources consisting of minerals and brines or from recycled batteries and glasses. Aqueous lithium mining from naturally occurring brines and salt deposits is advantageous compared to extraction from minerals, since it may be more environmentally friendly and cost-effective. In this article, we briefly discuss the adsorptive behaviour, synthetic methodology and prospects or challenges of major sorbents including spinel lithium manganese oxide (Li-Mn-O or LMO), spinel lithium titanium oxide (Li-Ti-O or LTO) and lithium aluminium layered double hydroxide chloride (LiCl·2Al(OH)). Membrane approaches and lithium recovery from end-of-life LIB will also be briefly discussed.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X696676
2018-01-01
2024-12-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/2/Moyer_16a_Imp.html?itemId=/content/journals/10.1595/205651317X696676&mimeType=html&fmt=ahah

References

  1. U. Wietelmann, R. J. Bauer, ‘Lithium and Lithium Compounds’, in “Ullmann’s Encyclopedia of Industrial Chemistry”, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2000 LINK https://doi.org/10.1002/14356007.a15_393 [Google Scholar]
  2. A. Somrani, A. H. Hamzaoui, M. Pontie, Desalination, 2013, 317, 184 LINK https://doi.org/10.1016/j.desal.2013.03.009 [Google Scholar]
  3. S. Ziemann, M. Weil, L. Schebek, Resour. Conserv. Recycl., 2012, 63, 26 LINK https://doi.org/10.1016/j.resconrec.2012.04.002 [Google Scholar]
  4. C. Grosjean, P. H. Miranda, M. Perrin, P. Poggi, Renew. Sustain. Energy Rev., 2012, 16, (3), 1735 LINK https://doi.org/10.1016/j.rser.2011.11.023 [Google Scholar]
  5. G. Yang, H. Shi, W. Liu, W. Xing, N. Xu, Chin. J. Chem. Eng., 2011, 19, (4), 586 LINK https://doi.org/10.1016/S1004-9541(11)60026-8 [Google Scholar]
  6. P. K. Choubey, M. Kim, R. R. Srivastava, J. Lee, J.-Y. Lee, Min. Eng., 2016, 89, 119 LINK https://doi.org/10.1016/j.mineng.2016.01.010 [Google Scholar]
  7. P. Meshram, B. D. Pandey, T. R. Mankhand, Hydrometallurgy, 2014, 150, 192 LINK https://doi.org/10.1016/j.hydromet.2014.10.012 [Google Scholar]
  8. J. W. An, D. J. Kang, K. T. Tran, M. J. Kim, T. Lim, T. Tran, Hydrometallurgy, 2012, 117–118, 64 LINK https://doi.org/10.1016/j.hydromet.2012.02.008 [Google Scholar]
  9. D. A. Boryta, T. F. Kullberg, A. M. Thurston, Cemetall Foote Corp,, ‘Production of Lithium Compounds Directly from Lithium Containing Brines’, US Patent Appl., 2011/0,123,427 [Google Scholar]
  10. S.-Y. Sun, X. Song, Q.-H. Zhang, J. Wang, J.-G. Yu, Adsorption, 2011, 17, (5), 881 LINK https://doi.org/10.1007/s10450-011-9356-0 [Google Scholar]
  11. M. J. Ariza, D. J. Jones, J. Rozière, R. Chitrakar, K. Ooi, Chem. Mater., 2006, 18, (7), 1885 LINK https://doi.org/10.1021/cm052214r [Google Scholar]
  12. M. M. Thackeray, P. J. Johnson, L. A. de Picciotto, P. G. Bruce, J. B. Goodenough, Mater. Res. Bull., 1984, 19, (2), 179 LINK https://doi.org/10.1016/0025-5408(84)90088-6 [Google Scholar]
  13. Q. Feng, Y. Miyai, H. Kanoh, K. Ooi, Langmuir, 1992, 8, (7), 1861 LINK https://doi.org/10.1021/la00043a029 [Google Scholar]
  14. Q.-H. Zhang, S.-P. Li, S.-Y. Sun, X.-S. Yin, J.-G. Yu, Chem. Eng. Sci., 2010, 65, (1), 169 LINK https://doi.org/10.1016/j.ces.2009.06.045 [Google Scholar]
  15. Q.-H. Zhang, S. Sun, S. Li, H. Jiang, J.-G. Yu, Chem. Eng. Sci., 2007, 62, (18–20), 4869 LINK https://doi.org/10.1016/j.ces.2007.01.016 [Google Scholar]
  16. Q. Feng, Y. Higashimoto, K. Kajiyoshi, K. Yanagisawa, J. Mater. Sci. Lett., 2001, 20, (3), 269 LINK https://doi.org/10.1023/A:1006757825786 [Google Scholar]
  17. C. Özgür, Solid State Ionics, 2010, 181, (31–32), 1425 LINK https://doi.org/10.1016/j.ssi.2010.08.001 [Google Scholar]
  18. L. Li, W. Qu, F. Liu, T. Zhao, X. Zhang, R. Chen, F. Wu, Appl. Surf. Sci., 2014, 315, 59 LINK https://doi.org/10.1016/j.apsusc.2014.07.090 [Google Scholar]
  19. R. Chitrakar, Y. Makita, K. Ooi, A. Sonoda, Chem. Lett., 2012, 41, (12), 1647 LINK https://doi.org/10.1246/cl.2012.1647 [Google Scholar]
  20. R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Ind. Eng. Chem. Res., 2001, 40, (9), 2054 LINK https://doi.org/10.1021/ie000911h [Google Scholar]
  21. L. Liu, H. Zhang, Y. Zhang, D. Cao, X. Zhao, Colloids Surf. A: Physiochem. Eng. Aspects, 2015, 468, 280 LINK https://doi.org/10.1016/j.colsurfa.2014.12.025 [Google Scholar]
  22. X. Shi, D. Zhou, Z. Zhang, L. Yu, H. Xu, B. Chen, X. Yang, Hydrometallurgy, 2011, 110, (1–4), 99 LINK https://doi.org/10.1016/j.hydromet.2011.09.004 [Google Scholar]
  23. R. Chitrakar, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater., 2000, 12, (10), 3151 LINK https://doi.org/10.1021/cm0000191 [Google Scholar]
  24. J.-L. Xiao, S.-Y. Sun, J. Wang, P. Li, J.-G. Yu, Ind. Eng. Chem. Res., 2013, 52, (34), 11967 LINK https://doi.org/10.1021/ie400691d [Google Scholar]
  25. S.-Y. Sun, J.-L. Xiao, J. Wang, X. Song, J.-G. Yu, Ind. Eng. Chem. Res., 2014, 53, (40), 15517 LINK https://doi.org/10.1021/ie5004625 [Google Scholar]
  26. R. Chitrakar, K. Sakane, A. Umeno, S. Kasaishi, N. Takagi, K. Ooi, J. Solid State Chem., 2002, 169, (1), 66 LINK https://doi.org/10.1016/S0022-4596(02)00018-X [Google Scholar]
  27. X. Yang, H. Kanoh, W. Tang, K. Ooi, J. Mater. Chem., 2000, 10, (8), 1903 LINK http://dx.doi.org/10.1039/B000219O [Google Scholar]
  28. K. Ooi, Y. Makita, A. Sonoda, R. Chitrakar, Y. Tasaki-Handa, T. Nakazato, Chem. Eng. J., 2016, 288, 137 LINK https://doi.org/10.1016/j.cej.2015.11.092 [Google Scholar]
  29. H.-J. Hong, I.-S. Park, T. Ryu, J. Ryu, B.-G. Kim, K.-S. Chung, Chem. Eng. J., 2013, 234, 16 LINK https://doi.org/10.1016/j.cej.2013.08.060 [Google Scholar]
  30. T. Ryu, Y. Haldorai, A. Rengaraj, J. Shin, H.-J. Hong, G.-W. Lee, Y.-K. Han, Y. S. Huh, K.-S. Chung, Ind. Eng. Chem. Res., 2016, 55, (26), 7218 LINK https://doi.org/10.1021/acs.iecr.6b01632 [Google Scholar]
  31. K. S. Chung, J. C. Lee, E. J. Kim, K. C. Lee, Y. S. Kim, K. Ooi, Mater. Sci. Forum, 2004, 449-452, 277 LINK https://doi.org/10.4028/www.scientific.net/MSF.449-452.277 [Google Scholar]
  32. Y. Miyai, K. Ooi, T. Nishimura, J. Kumamoto, Bull. Soc. Sea Water Sci., Jpn., 1994, 48, (6), 411 LINK https://doi.org/10.11457/swsj1965.48.411LINK https://www.jstage.jst.go.jp/article/swsj1965/48/6/48_411/_article/-char/en [Google Scholar]
  33. L. Wang, W. Ma, R. Liu, H. Y. Li, C. G. Meng, Solid State Ionics, 2006, 177, (17–18), 1421 LINK https://doi.org/10.1016/j.ssi.2006.07.019 [Google Scholar]
  34. J. C. Hunter, J. Solid State Chem., 1981, 39, (2), 142 LINK https://doi.org/10.1016/0022-4596(81)90323-6 [Google Scholar]
  35. G. Xiao, K. Tong, L. Zhou, J. Xiao, S. Sun, P. Li, J. Yu, Ind. Eng. Chem. Res., 2012, 51, (33), 10921 LINK https://doi.org/10.1021/ie300087s [Google Scholar]
  36. L.-W. Ma, B.-Z. Chen, Y. Chen, X.-C. Shi, Micropor. Mesopor. Mater., 2011, 142, (1), 147 LINK https://doi.org/10.1016/j.micromeso.2010.11.028 [Google Scholar]
  37. R. Chitrakar, H. Kanoh, Y. Makita, Y. Miyai, K. Ooi, J. Mater. Chem., 2000, 10, (10), 2325 LINK https://doi.org/10.1039/B002465L [Google Scholar]
  38. L. Croguennec, P. Deniard, R. Brec, A. Lecerf, J. Mater. Chem., 1997, 7, (3), 511 LINK https://doi.org/10.1039/A604947H [Google Scholar]
  39. L. Tian, W. Ma, M. Han, Chem. Eng. J., 2010, 156, (1), 134 LINK https://doi.org/10.1016/j.cej.2009.10.008 [Google Scholar]
  40. Q. Feng, Y. Miyai, H. Kanoh, K. Ooi, Chem. Mater., 1993, 5, (3), 311 LINK https://doi.org/10.1021/cm00027a013 [Google Scholar]
  41. R. Chitrakar, Y. Makita, K. Ooi, A. Sonoda, Ind. Eng. Chem. Res., 2014, 53, (9), 3682 LINK https://doi.org/10.1021/ie4043642 [Google Scholar]
  42. Y. Miyai, K. Ooi, S. Katoh, Sep. Sci. Technol., 1988, 23, (1–3), 179 LINK https://doi.org/10.1080/01496398808057641 [Google Scholar]
  43. R. Chitrakar, Y. Makita, K. Ooi, A. Sonoda, Dalton Trans., 2014, 43, (23), 8933 LINK https://doi.org/10.1039/C4DT00467A [Google Scholar]
  44. L. Zhang, D Zhou, G. He, F. Wang, J. Zhou, Mater. Lett., 2014, 135, 206 LINK https://doi.org/10.1016/j.matlet.2014.07.176 [Google Scholar]
  45. X. Shi, Z. Zhang, D. Zhou, L. Zhang, B. Chen, L. Yu, Trans. Nonferrous Met. Soc. China, 2013, 23, (1), 253 LINK https://doi.org/10.1016/S1003-6326(13)62453-X [Google Scholar]
  46. C. P. Lawagon, G. M. Nisola, J. Mun, A. Tron, R. E. C. Torrejos, J. G. Seo, H. Kim, W.-J. Chung, J. Ind. Eng. Chem., 2016, 35, 347 LINK https://doi.org/10.1016/j.jiec.2016.01.015 [Google Scholar]
  47. D. Tang, D. Zhou, J. Zhou, P. Zhang, L. Zhang, Y. Xia, Hydrometallurgy, 2015, 157, 90 LINK https://doi.org/10.1016/j.hydromet.2015.07.009 [Google Scholar]
  48. S. Wang, P. Li, W. Cui, H. Zhang, H. Wang, S. Zheng, Y. Zhang, RSC Adv., 2016, 6, (104), 102608 LINK https://doi.org/10.1039/C6RA18018C [Google Scholar]
  49. L. Zhang, D. Zhou, Q. Yao, J. Zhou, Appl. Surf. Sci., 2016, 368, 82 LINK https://doi.org/10.1016/j.apsusc.2016.01.203 [Google Scholar]
  50. A. Deptuła, M. Brykała, W. Łada, T. Olczak, B. Sartowska, A. G. Chmielewski, D. Wawszczak, C. Alvani, Fusion Eng. Des., 2009, 84, (2–6), 681 LINK https://doi.org/10.1016/j.fusengdes.2008.12.077 [Google Scholar]
  51. C.-L. Yu, F. Wang, S.-Y. Cao, D.-P. Gao, H.-B. Hui, Y.-Y. Guo, D.-Y. Wang, Dalton Trans., 2015, 44, (35), 15721 LINK https://doi.org/10.1039/C4DT03689A [Google Scholar]
  52. G. He, L. Zhang, D. Zhou, Y. Zou, F. Wang, Ionics, 2015, 21, (8), 2219 LINK https://doi.org/10.1007/s11581-015-1393-3 [Google Scholar]
  53. L. A. Limjuco, G. M. Nisola, C. P. Lawagon, S.-P. Lee, J. G. Seo, H. Kim, W.-J. Chung, Colloids Surf. A: Physiochem. Eng. Aspects, 2016, 504, 267 LINK https://doi.org/10.1016/j.colsurfa.2016.05.072 [Google Scholar]
  54. G.-N. Zhu, Y.-G. Wang, Y.-Y. Xia, Energy Environ. Sci., 2012, 5, (5), 6652 LINK https://doi.org/10.1039/C2EE03410G [Google Scholar]
  55. J. P. Thiel, C. K. Chiang, K. R. Poeppelmeier, Chem. Mater., 1993, 5, (3), 297 LINK https://doi.org/10.1021/cm00027a011 [Google Scholar]
  56. A. M. Fogg, A. J. Freij, G. M. Parkinson, Chem. Mater., 2002, 14, (1), 232 LINK https://doi.org/10.1021/cm0105099 [Google Scholar]
  57. A. V. Besserguenev, A. M. Fogg, R. J. Francis, S. J. Price, D. O’Hare, V. P. Isupov, B. P. Tolochko, Chem. Mater., 1997, 9, (1), 241 LINK https://doi.org/10.1021/cm960316z [Google Scholar]
  58. A. M. Fogg, D. O’Hare, Chem. Mater., 1999, 11, (7), 1771 LINK https://doi.org/10.1021/cm981151s [Google Scholar]
  59. G. R. Williams, D. O’Hare, J. Phys. Chem. B, 2006, 110, (22), 10619 LINK https://doi.org/10.1021/jp057130k [Google Scholar]
  60. S.-L. Wang, C.-H. Lin, Y.-Y. Yan, M. K. Wang, Appl. Clay Sci., 2013, 72, 191 LINK https://doi.org/10.1016/j.clay.2013.02.001 [Google Scholar]
  61. J. Qu, X. He, B. Wang, L. Zhong, L. Wan, X. Li, S. Song, Q. Zhang, Appl. Clay Sci., 2016, 120, 24 LINK https://doi.org/10.1016/j.clay.2015.11.017 [Google Scholar]
  62. J. M. Lee, W. C. Bauman, The Dow Chemical Company,, ‘Recovery of Lithium from Brines’, US Patent Appl. 1979/4,159,311 [Google Scholar]
  63. W. C. Bauman, J. L. Burba III, FMC Corp,, ‘Composition for the Recovery of Lithium Values from Brine and Process of Making/Using Said Composition’, US Patent, 6,280,693; 2001 [Google Scholar]
  64. N. P. Kotsupalo, A. D. Ryabtsev, I. A. Poroshina, A. A. Kurakov, E. V. Mamylova, L. T. Menzheres, M. A. Korchagin, Russ. J. Appl. Chem., 2013, 86, (4), 482 LINK https://doi.org/10.1134/S1070427213040046 [Google Scholar]
  65. J. L. Burba III, R. F. Stewart, B. E. Viani, S. Harrison, C. E. Vogdes, J. G. S. Lahlouh, Simbol Inc,, ‘Improved Sorbent for Lithium Extraction’, World Patent Appl., 2015/171,109 [Google Scholar]
  66. X. Wen, P. Ma, C. Zhu, Q. He, X. Deng, Sep. Purif. Technol., 2006, 49, (3), 230 LINK https://doi.org/10.1016/j.seppur.2005.10.004 [Google Scholar]
  67. Q. Bi, Z. Zhang, C. Zhao, Z. Tao, Water Sci. Technol., 2014, 70, (10), 1690 LINK https://doi.org/10.2166/wst.2014.426 [Google Scholar]
  68. S.-Y. Sun, L.-J. Cai, X.-Y. Nie, X. Song, J.-G. Yu, J. Water Process Eng., 2015, 7, 210 LINK https://doi.org/10.1016/j.jwpe.2015.06.012 [Google Scholar]
  69. W. Li, C. Shi, A. Zhou, X. He, Y. Sun, J. Zhang, Sep. Purif. Technol., 2017, 186, 233 LINK https://doi.org/10.1016/j.seppur.2017.05.044 [Google Scholar]
  70. Z. Zhao, X. Si, X. Liu, L. He, X. Liang, Hydrometallurgy, 2013, 133, 75 LINK https://doi.org/10.1016/j.hydromet.2012.11.013 [Google Scholar]
  71. X. Liu, X. Chen, Z. Zhao, X. Liang, Hydrometallurgy, 2014, 146, 24 LINK https://doi.org/10.1016/j.hydromet.2014.03.010 [Google Scholar]
  72. X. Liu, X. Chen, L. He, Z. Zhao, Desalination, 2015, 376, 35 LINK https://doi.org/10.1016/j.desal.2015.08.013 [Google Scholar]
  73. T. Hoshino, Fusion Eng. Des., 2013, 88, (11), 2956 LINK https://doi.org/10.1016/j.fusengdes.2013.06.009 [Google Scholar]
  74. T. Hoshino, Desalination, 2015, 359, 59 LINK https://doi.org/10.1016/j.desal.2014.12.018 [Google Scholar]
  75. T. Hoshino, Desalination, 2013, 317, 11 LINK https://doi.org/10.1016/j.desal.2013.02.014 [Google Scholar]
  76. Z. Ji, Q. Chen, J. Yuan, J. Liu, Y. Zhao, W. Feng, Sep. Purif. Technol., 2017, 172, 168 LINK https://doi.org/10.1016/j.seppur.2016.08.006 [Google Scholar]
  77. P. Ma, X. D. Chen, M. M. Hossain, Sep. Sci. Technol., 2000, 35, (15), 2513 LINK https://doi.org/10.1081/SS-100102353 [Google Scholar]
  78. L. Xing, J. Song, Z. Li, J. Liu, T. Huang, P. Dou, Y. Chen, X.-M. Li, T. He, J. Membrane Sci., 2016, 520, 596 LINK https://doi.org/10.1016/j.memsci.2016.08.027 [Google Scholar]
  79. J. Song, X.-M. Li, Y. Zhang, Y. Yin, B. Zhao, C. Li, D. Kong, T. He, J. Membrane Sci., 2014, 471, 372 LINK https://doi.org/10.1016/j.memsci.2014.08.010 [Google Scholar]
  80. Y. Guo, Y. Ying, Y. Mao, X. Peng, B. Chen, Angew. Chem., 2016, 128, (48), 15344 LINK https://doi.org/10.1002/ange.201607329 [Google Scholar]
  81. A. Umeno, Y. Miyai, N. Takagi, R. Chitrakar, K. Sakane, K. Ooi, Ind. Eng. Chem. Res., 2002, 41, (17), 4281 LINK https://doi.org/10.1021/ie010847j [Google Scholar]
  82. K.-S. Chung, J.-C. Lee, W.-K. Kim, S. B. Kim, K. Y. Cho, J. Membrane Sci., 2008, 325, (2), 503 LINK https://doi.org/10.1016/j.memsci.2008.09.041 [Google Scholar]
  83. W.-J. Chung, R. E. C. Torrejos, M. J. Park, E. L. Vivas, L. A. Limjuco, C. P. Lawagon, K. J. Parohinog, S.-P. Lee, H. K. Shon, H. Kim, G. M. Nisola, Chem. Eng. J., 2017, 309, 49 LINK https://doi.org/10.1016/j.cej.2016.09.133 [Google Scholar]
  84. M. J. Park, G. M. Nisola, E. L. Vivas, L. A. Limjuco, C. P. Lawagon, J. G. Seo, H. Kim, H. K. Shon, W.-J. Chung, J. Membrane Sci., 2016, 510, 141 LINK https://doi.org/10.1016/j.memsci.2016.02.062 [Google Scholar]
  85. R. Bhave, V. Deshmane, D. Kim, ‘Selective Recovery of Lithium from Geothermal Brine Using Novel Mixed Matrix Membranes Supported on Hollow Fiber and Inorganic Supports’, 2018, in preparation [Google Scholar]
  86. J. A. Epstein, E. M. Feist, J. Zmora, Y. Marcus, Hydrometallurgy, 1981, 6, (3–4), 269 LINK https://doi.org/10.1016/0304-386X(81)90044-X [Google Scholar]
  87. D. A. Lee, W. L. Taylor, W. J. McDowell, J. S. Drury, J. Inorg. Nucl. Chem., 1968, 30, (10), 2807 LINK https://doi.org/10.1016/0022-1902(68)80410-5 [Google Scholar]
  88. C. Shi, Y. Jing, Y. Jia, J. Mol. Liq., 2016, 215, 640 LINK https://doi.org/10.1016/j.molliq.2016.01.025 [Google Scholar]
  89. C. Shi, Y. Jing, Y. Jia, Russ. J. Phys. Chem.A, 2017, 91, (4), 692 LINK https://doi.org/10.1134/S0036024417040033 [Google Scholar]
  90. B. El-Eswed, M. Sunjuk, Y. S. Al-Degs, A. Shtaiwi, Separ. Sci. Technol., 2014, 49, (9), 1342 LINK https://doi.org/10.1080/01496395.2013.879665 [Google Scholar]
  91. E. G. Pinna, M. C. Ruiz, M. W. Ojeda, M. H. Rodriguez, Hydrometallurgy, 2017, 167, 66 LINK https://doi.org/10.1016/j.hydromet.2016.10.024 [Google Scholar]
  92. G. P. Nayaka, J. Manjanna, K. V. Pai, R. Vadavi, S. J. Keny, V. S. Tripathi, Hydrometallurgy, 2015, 151, 73 LINK https://doi.org/10.1016/j.hydromet.2014.11.006 [Google Scholar]
  93. M. Joulié, E. Billy, R. Laucournet, D. Meyer, Hydrometallurgy, 2017, 169, 426 LINK https://doi.org/10.1016/j.hydromet.2017.02.010 [Google Scholar]
  94. S.-H. Joo, D. ju Shin, C. Oh, J.-P. Wang, G. Senanayake, S. M. Shin, Hydrometallurgy, 2016, 159, 65 LINK https://doi.org/10.1016/j.hydromet.2015.10.012 [Google Scholar]
  95. C. K. Lee, K.-I. Rhee, J. Power Sources, 2002, 109, (1), 17 LINK https://doi.org/10.1016/S0378-7753(02)00037-X [Google Scholar]
  96. J. Xu, H. R. Thomas, R. W. Francis, K. R. Lum, J. Wang, B. Liang, J. Power Sources, 2008, 177, (2), 512 LINK https://doi.org/10.1016/j.jpowsour.2007.11.074 [Google Scholar]
  97. M. Contestabile, S. Panero, B. Scrosati, J. Power Sources, 2001, 92, (1–2), 65 LINK https://doi.org/10.1016/S0378-7753(00)00523-1 [Google Scholar]
  98. S. Castillo, F. Ansart, C. Laberty-Robert, J. Portal, J. Power Sources, 2002, 112, (1), 247 LINK https://doi.org/10.1016/S0378-7753(02)00361-0 [Google Scholar]
  99. D. C. R. Espinosa, A. M. Bernardes, J. A. S. Tenório, J. Power Sources, 2004, 135, (1–2), 311 LINK https://doi.org/10.1016/j.jpowsour.2004.03.083 [Google Scholar]
  100. P. Zhang, T. Yokoyama, O. Itabashi, T. M. Suzuki, K. Inoue, Hydrometallurgy, 1998, 47, (2–3), 259 LINK https://doi.org/10.1016/S0304-386X(97)00050-9 [Google Scholar]
  101. L. Li, J. Ge, F. Wu, R. Chen, S. Chen, B. Wu, J. Hazard. Mater., 2010, 176, (1–3), 288 LINK https://doi.org/10.1016/j.jhazmat.2009.11.026 [Google Scholar]
  102. J. Nan, D. Han, X. Zuo, J. Power Sources, 2005, 152, 278 LINK https://doi.org/10.1016/j.jpowsour.2005.03.134 [Google Scholar]
  103. B. Swain, J. Jeong, J. Lee, G.-H. Lee, J.-S. Sohn, J. Power Sources, 2007, 167, (2), 536 LINK https://doi.org/10.1016/j.jpowsour.2007.02.046 [Google Scholar]
  104. J. Ordoñez, E. J. Gago, A. Girard, Renew. Sustain. Energy Rev., 2016, 60, 195 LINK https://doi.org/10.1016/j.rser.2015.12.363 [Google Scholar]
  105. Y. Guo, F. Li, H. Zhu, G. Li, J. Huang, W. He, Waste Manage., 2016, 51, 227 LINK https://doi.org/10.1016/j.wasman.2015.11.036 [Google Scholar]
  106. S. P. Barik, G. Prabaharan, B. Kumar, Waste Manage., 2016, 51, 222 LINK https://doi.org/10.1016/j.wasman.2015.11.004 [Google Scholar]
  107. X. Chen, H. Ma, C. Luo, T. Zhou, J. Hazard. Mater., 2017, 326, 77 LINK https://doi.org/10.1016/j.jhazmat.2016.12.021 [Google Scholar]
  108. L.-P. He, S.-Y. Sun, X.-F. Song, J.-G. Yu, Waste Manage., 2017, 64, 171 LINK https://doi.org/10.1016/j.wasman.2017.02.011 [Google Scholar]
  109. L. Li, E. Fan, Y. Guan, X. Zhang, Q. Xue, L. Wei, F. Wu, R. Chen, ACS Sustainable Chem. Eng., 2017, 5, (6), 5224 LINK https://doi.org/10.1021/acssuschemeng.7b00571 [Google Scholar]
  110. J. Xiao, J. Li, Z. Xu, Environ. Sci. Technol., 2017, 51, (20), 11960 LINK https://doi.org/10.1021/acs.est.7b02561 [Google Scholar]
/content/journals/10.1595/205651317X696676
Loading
/content/journals/10.1595/205651317X696676
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test