Skip to content
1887
Volume 61, Issue 1
  • ISSN: 2056-5135

Abstract

The successful use in rocket engines of iridium as a barrier coating is an important area of high-temperature application. The Ir coating must be continuous and dense in order to protect the underlying material from corrosion and oxidation. The microstructure and morphology of the coating can be effectively controlled by varying the deposition conditions. The microstructure has an important influence on the physical and mechanical properties of the coating. A number of deposition processes, which have different conditions and requirements, have been employed to produce Ir coatings on various substrate materials. Part I of this paper presents the introduction and reviews the different deposition processes, while Part II will deal with texture and structure evolution, mechanical properties, growth mechanisms and applications of Ir coatings. The mechanisms of micropore formation after high-temperature treatment will also be investigated in some detail.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X693606
2017-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/61/1/JMTR-61-1-Wu-pt1.html?itemId=/content/journals/10.1595/205651317X693606&mimeType=html&fmt=ahah

References

  1. Couderc C. Platinum Metals Rev., 2010, 54, (3), 186 LINK http://www.technology.matthey.com/article/54/3/186-191/ [Google Scholar]
  2. Goswami J., Wang C.-G., Majhi P., Shin Y.-W., and Dey S. K. J. Mater. Res., 2001, 16, (8), 2192 LINK http://dx.doi.org/10.1557/JMR.2001.0300 [Google Scholar]
  3. Richardson F. D. Platinum Metals Rev., 1958, 2, (3), 83 LINK http://www.technology.matthey.com/article/2/3/83-85/ [Google Scholar]
  4. Handley J. R. Platinum Metals Rev., 1986, 30, (1), 12 LINK http://www.technology.matthey.com/article/30/1/12-13/ [Google Scholar]
  5. Ohriner E. K. Platinum Metals Rev., 2008, 52, (3), 186 LINK http://www.technology.matthey.com/article/52/3/186-197/ [Google Scholar]
  6. Chen Z. F., Wu W. P., and Cong X. N. J. Mater. Sci. Technol., 2014, 30, (3), 268 LINK http://dx.doi.org/10.1016/j.jmst.2013.06.002 [Google Scholar]
  7. Snell L., Nelson A., and Molian P. Carbon, 2001, 39, (7), 991 LINK http://dx.doi.org/10.1016/S0008-6223(00)00200-1 [Google Scholar]
  8. Brookes C. A., Greenwood J. H., and Routbort J. L. J. Appl. Phys., 1968, 39, (5), 2391 LINK http://dx.doi.org/10.1063/1.1656565 [Google Scholar]
  9. Weiland R., Lupton D. F., Fischer B., Merker J., Scheckenbach C., and Witte J. Platinum Metals Rev., 2006, 50, (4), 158 LINK http://www.technology.matthey.com/article/50/4/158-170/ [Google Scholar]
  10. Douglass R. W., and Jaffee R. I. Proc. ASTM., 1962, 62, 627 LINK https://www.astm.org/DIGITAL_LIBRARY/STP/MMR/PAGES/PRO1962-62.htm [Google Scholar]
  11. Mordike B. L., and Brookes C. A. Platinum Metals Rev., 1960, 4, (3), 94 LINK http://www.technology.matthey.com/article/4/3/94-99/ [Google Scholar]
  12. Chen Z. F., Wu W. P., Wang L. B., and Zhang Y. Int. J. Fract., 2008, 153, (2), 185 LINK http://dx.doi.org/10.1007/s10704-009-9310-2 [Google Scholar]
  13. Hua Y. F., Zhang L. T., Cheng L. F., and Yang W. B. Mater. Sci. Eng. B, 2005, 121, (1–2), 156 LINK http://dx.doi.org/10.1016/j.mseb.2005.03.020 [Google Scholar]
  14. Gandhi C., and Ashby M. F. Scripta Metall., 1979, 13, (5), 371 LINK http://dx.doi.org/10.1016/0036-9748(79)90227-8 [Google Scholar]
  15. Panfilov P. J. Mater. Sci., 2007, 42, (19), 8230 LINK http://dx.doi.org/10.1007/s10853-007-1722-7 [Google Scholar]
  16. Panfilov P., and Yermakov A. Platinum Metals Rev., 2001, 45, (4), 176 LINK http://www.technology.matthey.com/article/45/4/176-178-2/ [Google Scholar]
  17. Panfilov P., Yermakov A., Dmitriev V., and Timofeev N. Platinum Metals Rev., 1991, 35, (4), 196 LINK http://www.technology.matthey.com/article/35/4/196-200/ [Google Scholar]
  18. Panfilov P., and Yermakov A. Int. J. Fract., 2004, 128, (1), 147 LINK http://dx.doi.org/10.1023/B:FRAC.0000040977.26875.1f [Google Scholar]
  19. Panfilov P., and Yermakov A. J. Mater. Sci., 2004, 39, (14), 4543 LINK http://dx.doi.org/10.1023/B:JMSC.0000034148.03387.71 [Google Scholar]
  20. Panfilov P. J. Mater. Sci., 2005, 40, (22), 5983 LINK http://dx.doi.org/10.1007/s10853-005-1296-1 [Google Scholar]
  21. George E. P., McKamey C. G., Ohriner E. K., and Lee E. H. Mater. Sci. Eng. A, 2001, 319–321, 466 LINK http://dx.doi.org/10.1016/S0921-5093(01)01082-6 [Google Scholar]
  22. MacFarlane R. E., Rayne J. A., and Jones C. K. Phys. Lett., 1966, 20, (3), 234 LINK http://dx.doi.org/10.1016/0031-9163(66)90340-4 [Google Scholar]
  23. Reid C. N., and Routbort J. L. Metall. Trans., 1972, 3, (8), 2257 LINK http://dx.doi.org/10.1007/BF02643240 [Google Scholar]
  24. Heatherly L., and George E. P. Acta Mater., 2001, 49, (2), 289 LINK http://dx.doi.org/10.1016/S1359-6454(00)00313-X [Google Scholar]
  25. White C. L., and Liu C. T. Scripta Metall., 1978, 12, (8), 727 LINK http://dx.doi.org/10.1016/0036-9748(78)90316-2 [Google Scholar]
  26. White C. L., Clausing R. E., and Heatherly L. Metall. Trans. A, 1979, 10, (6), 683 LINK http://dx.doi.org/10.1007/BF02658389 [Google Scholar]
  27. Heatherly L., and George E. P. Acta Mater., 2001, 49, (2), 289 LINK http://dx.doi.org/10.1016/S1359-6454(00)00313-X [Google Scholar]
  28. Yermakov A. V., Koltygin V. M., and Fatyushina E. V. Platinum Metals Rev., 1992, 36, (3), 146 LINK http://www.technology.matthey.com/article/36/3/146-149/ [Google Scholar]
  29. Yermakov A., Panfilov P., and Adamesku R. J. Mater. Sci. Lett., 1990, 9, (6), 696 LINK http://dx.doi.org/10.1007/BF00721807 [Google Scholar]
  30. Ermakov A. V., Klotsman S. M., Pushin V. G., Timofeev A. N., Kaigorodov V. N., Panfilov P. Ye., and Yurchenko L. I. Scripta Mater., 1999, 42, (2), 209 LINK http://dx.doi.org/10.1016/S1359-6462(99)00323-1 [Google Scholar]
  31. Hecker S. S., Rohr D. L., and Stein D. F. Metall. Trans. A, 1978, 9, (4), 481 LINK http://dx.doi.org/10.1007/BF02646403 [Google Scholar]
  32. Lynch S. P. Scripta Mater., 2007, 57, (2), 85 LINK http://dx.doi.org/10.1016/j.scriptamat.2007.03.039 [Google Scholar]
  33. Balk T. J., and Hemker K. J. Phil. Mag. A, 2001, 81, (6), 1507 LINK http://dx.doi.org/10.1080/01418610108214360 [Google Scholar]
  34. MacLaren J. M., Crampin S., Vvedensky D. D., and Eberhart M. E. Phys. Rev. Lett., 1989, 63, (23), 2586 LINK http://dx.doi.org/10.1103/PhysRevLett.63.2586 [Google Scholar]
  35. Crampin S., Hampel K., Vvedensky D. D., and MacLaren J. M. J. Mater. Res., 1990, 5, (10), 2107 LINK http://dx.doi.org/10.1557/JMR.1990.2107 [Google Scholar]
  36. Cawkwell M. J., Nguyen-Manh D., Woodward C., Pettifor D. G., and Vitek V. Science, 2005, 309, (5737), 1059 LINK http://dx.doi.org/10.1126/science.1114704 [Google Scholar]
  37. Liu C. T., and Inouye H. “Development and Characterization of an Improved Ir–0.3% W Alloy for Space Radioisotopic Heat Sources”, ORNL-5290, Oak Ridge National Laboratory, Tennessee, USA, 1977 LINK http://www.osti.gov/scitech/servlets/purl/5270002/ [Google Scholar]
  38. Franco-Ferreira E. A., Goodwin G. M., George T. G., and Rinehart G. H. Platinum Metals Rev., 1997, 41, (4), 154 LINK http://www.technology.matthey.com/article/41/4/154-163/ [Google Scholar]
  39. White C. L., and Liu C. T. Acta Metall., 1981, 29, (2), 301 LINK http://dx.doi.org/10.1016/0001-6160(81)90157-7 [Google Scholar]
  40. Liu C. T., Inouye H., and Schaffhauser A. C. Metall. Trans. A, 1981, 12, (6), 993 LINK http://dx.doi.org/10.1007/BF02643480 [Google Scholar]
  41. White C. L., Heatherly L., and Padgett R. A. Acta Metall., 1983, 31, (1), 111 LINK http://dx.doi.org/10.1016/0001-6160(83)90070-6 [Google Scholar]
  42. George E. P., McKamey C. G., Ohriner E. K., and Lee E. H. Mater. Sci. Eng.: A, 2001, 319–321, 466 LINK http://dx.doi.org/10.1016/S0921-5093(01)01082-6 [Google Scholar]
  43. Liu C. T., and Inouye H. “Study of Iridium and Iridium-tungsten Alloys for Space Radioisotopic Heat Sources’, ORNL-5240, Oak Ridge National Laboratory, Tennessee, USA, 1976 LINK http://www.osti.gov/scitech/servlets/purl/7321970 [Google Scholar]
  44. Jehn H., Völker R., and Ismail M. I. Platinum Metals Rev., 1978, 22, (3), 92 LINK http://www.technology.matthey.com/article/22/3/92-97/# [Google Scholar]
  45. Ultramet Advanced Materials Solutions, Propulsion System Components, liquid rocket engines: http://www.ultramet.com/propulsionsystem_components_liquid_rocket.html (Accessed on 17th October 2016)
  46. Bao Z. B., Murakami H., and Yamabe-Mitarai Y. Appl. Surf. Sci., 2011, 258, (4), 1514 LINK http://dx.doi.org/10.1016/j.apsusc.2011.09.121 [Google Scholar]
  47. Wimber R. T., and Kraus H. G. Metall. Trans., 1974, 5, (7), 1565 LINK http://dx.doi.org/10.1007/BF02646327 [Google Scholar]
  48. Chen Z. F., Wu W. P., Wang L. B., and Zhang Y. Surf. Eng., 2011, 27, (4), 242 LINK http://www.tandfonline.com/doi/full/10.1179/174329409X397787 [Google Scholar]
  49. Arblaster J. W. Platinum Metals Rev., 2010, 54, (2), 93 LINK http://www.technology.matthey.com/article/54/2/93-102/# [Google Scholar]
  50. Weinberger M. B., Levine J. B., Chung H.-Y., Cumberland R. W., Rasool H. I., Yang J.-M., Kaner R. B., and Tolbert S. H. Chem. Mater., 2009, 21, (9), 1915 LINK http://dx.doi.org/10.1021/cm900211v [Google Scholar]
  51. Wu W. P., Lin X., Chen Z. F., Chen Z. F., Cong X. N., Xu T. Z., and Qiu J. L. Plasma Chem. Plasma Proc., 2011, 31, (3), 465 LINK http://dx.doi.org/10.1007/s11090-011-9293-4 [Google Scholar]
  52. Hunt L. B. Platinum Metals Rev., 1987, 31, (1), 32 LINK http://www.technology.matthey.com/article/31/1/32-41/ [Google Scholar]
  53. Ritterhaus Y., Hur’yeva T., Lisker M., and Burte E. P. Chem. Vap. Deposition, 2007, 13, (12), 698 LINK http://dx.doi.org/10.1002/cvde.200706630 [Google Scholar]
  54. Hecker S. S., Rohr D. L., and Stein D. F. Metall. Trans. A, 1978, 9, (4), 481 LINK http://dx.doi.org/10.1007/BF02646403 [Google Scholar]
  55. Sabol S. M., Randall B. T., Edington J. D., Larkin C. J., and Close B. J. “Barrier Coatings for Refractory Metals and Superalloys”, B-MT-(SPME)-35, TRN: US0603658, Bettis Atomic Power Laboratory (BAPL), Pennsylvania, USA, 2006, pp. 128 LINK http://dx.doi.org/10.2172/884669 [Google Scholar]
  56. Mumtaz K., Echigoya J., Hirai T., and Shindo Y. J. Mater. Sci. Lett., 1993, 12, (18), 1411 LINK http://dx.doi.org/10.1007/BF00591591 [Google Scholar]
  57. Baklanova N. I., Morozova N. B., Kriventsov V. V., and Titov A. T. Carbon, 2013, 56, 243 LINK http://dx.doi.org/10.1016/j.carbon.2013.01.006 [Google Scholar]
  58. Merker J., Fischer B., Lupton D. F., and Witte J. Mater. Sci. Forum, 2007, 539–543, 2216 LINK http://dx.doi.org/10.4028/www.scientific.net/MSF.539-543.2216 [Google Scholar]
  59. Tuffias R. H. Mater. Manuf. Process., 1998, 13, (5), 773 LINK http://dx.doi.org/10.1080/10426919808935298 [Google Scholar]
  60. Kovacs G. T. A., Storment C. W., and Kounaves S. P. Sens. Actuators B, 1995, 23, (1), 41 LINK http://dx.doi.org/10.1016/0925-4005(94)01523-K [Google Scholar]
  61. Kim H.-U., Cha D.-H., Kim H.-J., and Kim J.-H. Int. J. Prec. Eng. Manuf., 2009, 10, (3), 19 LINK http://dx.doi.org/10.1007/s12541-009-0042-z [Google Scholar]
  62. Hagen J., Burmeister F., Fromm A., Manns P., and Kleer G. Plasma Process. Polym., 2009, 6, (S1), 678 LINK http://onlinelibrary.wiley.com/doi/10.1002/ppap.200931701/full [Google Scholar]
  63. Kohli S., Niles D., Rithner C. D., and Dorhout P. K. Adv. X-ray Anal., 2002, 45, 352 LINK http://www.icdd.com/resources/axa/vol45/v45_55.pdf [Google Scholar]
  64. Osamura H. ‘Development of Long Life and High Ignitability Iridium Spark Plug’, F2000A144, Seoul 2000 FISITA World Automotive Congress, Seoul, South Korea, 12th–15th June, 2000 LINK http://210.101.116.115/fisita/pdf/A144.pdf [Google Scholar]
  65. Horita S., Horii S., and Umemoto S. Jpn. J. Appl. Phys., 1998, 37, (1), 5141 LINK http://dx.doi.org/10.1143/JJAP.37.5141 [Google Scholar]
  66. Li Y., and Woollam J. A. J. Vac. Sci. Technol. A, 2004, 22, (5), 2177 LINK http://dx.doi.org/10.1116/1.1781182 [Google Scholar]
  67. Li Y., and Woollam J. A. J. Appl. Phys., 2002, 92, (8), 4386 LINK http://dx.doi.org/10.1063/1.1509091 [Google Scholar]
  68. El Sawy E. N., and Birss V. I. J. Mater. Chem., 2009, 19, (43), 8244 LINK http://dx.doi.org/10.1039/b914662h [Google Scholar]
  69. Zhu X.-Y., Wei J.-J., Chen L.-X., Liu J.-L., Hei L.-F., Li C.-M., and Zhang Y. Thin Solid Films, 2015, 584, 305 LINK http://dx.doi.org/10.1016/j.tsf.2015.01.002 [Google Scholar]
  70. Liu S.-C., Chen Y.-I., Shyu J.-J., Tsai H.-Y., Lin K.-Y., Chen Y.-H., and Lin K.-C. Surf. Coat. Technol., 2014, 259, (B), 352 LINK http://dx.doi.org/10.1016/j.surfcoat.2014.01.061 [Google Scholar]
  71. Liu S.-C., Chen Y.-I., Tsai H.-Y., Lin K.-C., and Chen Y.-H. Surf. Coat. Technol., 2013, 237, 105 LINK http://dx.doi.org/10.1016/j.surfcoat.2013.06.042 [Google Scholar]
  72. Cheon M.-W., Kim T.-G., and Park Y.-P. J. Ceramic Proc. Res., 2012, 13, (2), S328 LINK http://jcpr.kbs-lab.co.kr/file/JCPR_vol.13_2012/JCPR13-S2/ICAE2011-43.pdf [Google Scholar]
  73. Wu F.-B., Chen W.-Y., Duh J.-G., Tsai Y.-Y., and Chen Y.-I. Surf. Coat. Technol., 2003, 163–164, 227 LINK http://dx.doi.org/10.1016/S0257-8972(02)00616-3 [Google Scholar]
  74. Fukushima H., and Midorikawa S. Canon Kabushiki Kaisha, ‘Amorphous Alloy, Molding Die, and Method for Producing Optical Element’, US Appl. 2014/0,053,606 [Google Scholar]
  75. Zhang W., Vargas R., Goto T., Someno Y., and Hirai T. Appl. Phys. Lett., 1994, 64, (11), 1359 LINK http://dx.doi.org/10.1063/1.111934 [Google Scholar]
  76. Bessergenev V. G., Gelfond N. V., Igumenov I. K., Ilyasov S. Sh., Kangiev R. D., Kovalevskaya Yu. A., Kravchenko V. S., Slobodyan S. A., Motorin V. I., and Shestak A. F. Supercond. Sci. Technol., 1991, 4, (7), 273 LINK http://dx.doi.org/10.1088/0953-2048/4/7/001 [Google Scholar]
  77. Igumenov I. K., Gelfond N. V., Galkin P. S., Morozova N. B., Fedotova N. E., Zharkova G. I., Shipachev V. I., Reznikova E. F., Ryabtsev A. D., Kotsupalo N. P., Titarenko V. I., Dikov Yu. P., Distler V. V., and Buleev M. I. Desalination, 2001, 136, (1–3), 273 LINK http://dx.doi.org/10.1016/S0011-9164(01)00190-4 [Google Scholar]
  78. NASA Glenn Research Center at Lewis Field, ‘Achieving the Extraordinary’, NASA, 2006: http://www.nasa.gov/centers/glenn/pdf/168206main_CenterResume62011.pdf (Accessed on 24th November 2016)
  79. Liu C. T., George E. P., and Bloom E. E. UT-Battelle, LLC, ‘Ir-based Alloys for Ultra-high Temperature Applications’, US Patent 6,982,122; 2006 [Google Scholar]
  80. Tuffias R. H., Harding J., and Kaplan R. Ultramet, ‘High Temperature Corrosion Resistant Composite Structure’, US Patent 4,917,968; 1990 [Google Scholar]
  81. Li H.-J., Xue H., Fu Q.-G., Zhang Y.-L., Shi X.-H., and Li K.-Z. J. Inorg. Mater., 2010, 25, (4), 337 LINK http://dx.doi.org/10.3724/SP.J.1077.2010.00337 [Google Scholar]
  82. Hosoda H., Hosono H., Mishima Y., Takezoe H., and MacKenzie K. J. D. ‘Smart Coatings – Multilayered and Multifunctional in-situ Ultrahigh-temperature Coatings’, in “Nanomaterials: From Research to Applications”, eds. Elsevier Ltd, Oxford, UK, 2006, pp. 419445 LINK http://dx.doi.org/10.1016/B978-008044964-7/50014-5 [Google Scholar]
  83. Clift W. M., McCarty K. F., and Boehme D. R. Surf. Coat. Technol., 1990, 42, (1), 29 LINK http://dx.doi.org/10.1016/0257-8972(90)90112-P [Google Scholar]
  84. Yamabe-Mitari Y., Ro Y., Maruko T., and Harada H. Intermetallics, 1999, 7, (1), 49 LINK http://dx.doi.org/10.1016/S0966-9795(98)00010-7 [Google Scholar]
  85. Kuppusami P., Murakami H., and Ohmura T. Surf. Eng., 2005, 21, (1), 53 LINK http://dx.doi.org/10.1179/174329305X23218 [Google Scholar]
  86. Suzuki A., Wu Y., Yamaguchi A., Murakami H., and Rae C. M. F. Oxid. Met., 2007, 68, (1), 53 LINK http://dx.doi.org/10.1007/s11085-007-9056-z [Google Scholar]
  87. Tseng S.-F., Hsiao W.-T., Huang K.-C., Chen M.-F., Lee C.-T., and Chou C.-P. Surf. Coat. Technol., 2010, 205, (7), 1979 LINK http://dx.doi.org/10.1016/j.surfcoat.2010.08.075 [Google Scholar]
  88. Dey S. K., Goswami J., Wang C.-G., and Majhi P. Jpn. J. Appl. Phys., 1999, 38, (2), 1052 LINK http://dx.doi.org/10.1143/JJAP.38.L1052 [Google Scholar]
  89. El Khakani M. A., Chaker M., and Le Drogoff B. J. Vac. Sci. Technol. A, 1998, 16, (2), 885 LINK http://dx.doi.org/10.1116/1.581029 [Google Scholar]
  90. Mumtaz K., Echigoya J., Enoki H., Hirai T., and Shindo Y. J. Mater. Sci., 1995, 30, (2), 465 LINK http://dx.doi.org/10.1007/BF00354413 [Google Scholar]
  91. Mumtaz K., Echigoya J., Hirai T., and Shindo Y. Mater. Sci. Eng.: A, 1993, 167, (1–2), 187 LINK http://dx.doi.org/10.1016/0921-5093(93)90353-G [Google Scholar]
  92. Maury F., and Senocq F. Surf. Coat. Technol., 2003, 163–164, 208 LINK http://dx.doi.org/10.1016/S0257-8972(02)00485-1 [Google Scholar]
  93. Yan X., Zhang Q., and Fan X. Mater. Lett., 2007, 61, (1), 216 LINK http://dx.doi.org/10.1016/j.matlet.2006.04.034 [Google Scholar]
  94. Chen Y.-L., Hsu C.-C., Song Y.-H., Chi Y., Carty A. J., Peng S.-M., and Lee G.-H. Chem. Vap. Deposition, 2006, 12, (7), 442 LINK http://dx.doi.org/10.1002/cvde.200606491 [Google Scholar]
  95. Aaltonen T., Ritala M., Sammelselg V., and Leskelä M. J. Electrochem. Soc., 2004, 151, (8), G489 LINK http://dx.doi.org/10.1149/1.1761011 [Google Scholar]
  96. Wu Y.-N., Suzuki A., Murakami H., and Kuroda S. Mater. Trans., 2005, 46, (10), 2176 LINK http://dx.doi.org/10.2320/matertrans.46.2176 [Google Scholar]
  97. Zhu L.-A., Bai S.-X., and Zhang H. Surf. Coat. Technol., 2011, 206, (6), 1351 LINK http://dx.doi.org/10.1016/j.surfcoat.2011.08.058 [Google Scholar]
  98. Etenko A., McKechnie T., Shchetkovskiy A., and Smirnov A. ECS Trans., 2007, 3, (14), 151 LINK http://ecst.ecsdl.org/content/3/14/151.abstract [Google Scholar]
  99. Qian J.-G., and Zhao T. Trans. Nonferrous Met. Soc. China, 2012, 22, (11), 2855 LINK http://dx.doi.org/10.1016/S1003-6326(11)61542-2 [Google Scholar]
  100. Gong Y.-S., Wang C.-B., Shen Q., and Zhang L.-M. Appl. Surf. Sci., 2008, 254, (13), 3921 LINK http://dx.doi.org/10.1016/j.apsusc.2007.12.012 [Google Scholar]
  101. Wu W.-P., Chen Z.-F., Lin X., Li B.-B., and Cong X.-N. Vacuum, 2011, 86, (4), 429 LINK http://dx.doi.org/10.1016/j.vacuum.2011.09.003 [Google Scholar]
  102. Toenshoff D. A., Lanam R. D., Ragaini J., Shchetkovskiy A., and Smirnov A. ‘Iridium Coated Rhenium Rocket Chambers Produced by Electroforming’, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, USA, 24th–28th July, 2000 LINK http://dx.doi.org/10.2514/6.2000-3166 [Google Scholar]
  103. Garcia J. R. V., and Goto T. Mater. Trans., 2003, 44, (9), 1717 LINK http://dx.doi.org/10.2320/matertrans.44.1717 [Google Scholar]
  104. Harding J. T., Fry V., Tuffias R. H., and Kaplan R. B. “Oxidation Resistance of CVD Coatings”, AFRPL TR-86-099, Air Force Rocket Propulsion Laboratory (AFRPL), Edwards Air Force Base, California, USA, 1987, p. 29 [Google Scholar]
  105. Harding J. T., Tuffias R. H., and Kaplan R. B. “High Temperature Oxidation Resistant Coatings”, AFRPL TR-84-036, Air Force Rocket Propulsion Laboratory (AFRPL), Edwards Air Force Base, California, USA, 1984 [Google Scholar]
  106. Endle J. P., Sun Y.-M., Nguyen N., Madhukar S., Hance R. L., White J. M., and Ekerdt J. G. Thin Solid Films, 2001, 388, (1–2), 126 LINK http://dx.doi.org/10.1016/S0040-6090(01)00808-2 [Google Scholar]
  107. Gelfond N. V., Galkin P. S., Igumenov I. K., Morozova N. B., Fedotova N. E., Zharkova G. I., and Shubin Yu. V. J. Phys. IV France, 2001, 11, (Pr3), 593 LINK http://dx.doi.org/10.1051/jp4:2001375 [Google Scholar]
  108. Igumenov I. K., Gelfond N. V., Morozova N. B., and Nizard H. Chem. Vapor Depos., 2007, 13, (11), 633 LINK http://dx.doi.org/10.1002/cvde.200706602 [Google Scholar]
  109. Gong Y.-S., Wang C.-B., Shen Q., and Zhang L.-M. Vacuum, 2008, 82, (6), 594 LINK http://dx.doi.org/10.1016/j.vacuum.2007.09.003 [Google Scholar]
  110. Wu W.-P., Chen Z.-F., Cong X.-N., and Wang L.-B. Rare Metal Mater. Eng., 2013, 42, (2), 435 (In Chinese) LINK http://caod.oriprobe.com/articles/31751798/Review_on_High_Temperature_Oxidation_Resistant_Iridium_Coating_for_Ref.htm [Google Scholar]
  111. Criscione J. M., Mercuri R. A., Schram E. P., Smith A. W., and Volk H. F. ‘High Temperature Protective Coatings for Graphite’, ML-TDR-64-173, Part I, Union Carbide Corporation, Parma, Ohio, USA, 1964 LINK http://www.dtic.mil/dtic/tr/fulltext/u2/604463.pdf [Google Scholar]
  112. Criscione J. M., Mercuri R. A., Schram E. P., Smith A. W., and Volk H. F. ‘High Temperature Protective Coatings for Graphite’, ML-TDR-64-173, Part II, Union Carbide Corporation, Parma, Ohio, USA, 1964 LINK http://www.dtic.mil/dtic/tr/fulltext/u2/608092.pdf [Google Scholar]
  113. Goto T., Ono T., and Hirai T. Scripta Mater., 2001, 44, (8–9), 1187 LINK http://dx.doi.org/10.1016/S1359-6462(01)00683-2 [Google Scholar]
  114. Sun Y.-M., Endle J. P., Smith K., Whaley S., Mahaffy R., Ekerdt J. G., White J. M., and Hance R. L. Thin Solid Films, 1999, 346, (1–2), 100 LINK http://dx.doi.org/10.1016/S0040-6090(98)01458-8 [Google Scholar]
  115. Hoke J. B., Stern E. W., and Murray H. H. J. Mater. Chem., 1991, 1, (4), 551 LINK http://dx.doi.org/10.1039/jm9910100551 [Google Scholar]
  116. Cai H.-Z., Chen L., Wei Y., and Hu C.-Y. Rare Metal Mater. Eng., 2010, 39, (2), 209 LINK http://dx.doi.org/10.1016/S1875-5372(10)60081-1 [Google Scholar]
  117. Reed B. D., Biaglow J. A., and Schneider S. J. Mater. Manuf. Proc., 1998, 13, (5), 757 LINK http://dx.doi.org/10.1080/10426919808935297 [Google Scholar]
  118. Knapas K., and Ritala M. Chem. Mater., 2011, 23, (11), 2766 LINK http://dx.doi.org/10.1021/cm103490v [Google Scholar]
  119. Hämäläinen J., Puukilainen E., Sajavaara T., Ritala M., and Leskelä M. Thin Solid Films, 2013, 531, 243 LINK http://dx.doi.org/10.1016/j.tsf.2013.01.091 [Google Scholar]
  120. Hämäläinen J., Ritala M., and Leskelä M. Chem. Mater., 2014, 26, (1), 786 LINK http://dx.doi.org/10.1021/cm402221y [Google Scholar]
  121. Hämäläinen J., Hatanpää T., Puukilainen E., Sajavaara T., Ritala M., and Leskelä M. J. Mater. Chem., 2011, 21, (41), 16488 LINK http://dx.doi.org/10.1039/c1jm12245b [Google Scholar]
  122. Hämäläinen J., Puukilainen E., Kemell M., Costelle L., Ritala M., and Leskelä M. Chem. Mater., 2009, 21, (20), 4868 LINK http://dx.doi.org/10.1021/cm901687w [Google Scholar]
  123. Christensen S. T., and Elam J. W. Chem. Mater., 2010, 22, (8), 2517 LINK http://dx.doi.org/10.1021/cm9031978 [Google Scholar]
  124. Venables J. A. “Introduction to Surface and Thin Film Processes”, Cambridge University Press, Cambridge, UK, 2000 LINK http://dx.doi.org/10.1017/CBO9780511755651 [Google Scholar]
  125. Ohring M. “Materials Science of Thin Films: Deposition and Structure”, 2nd Edn.,Academic Press, San Diego, California, USA, 2002 [Google Scholar]
  126. Mumtaz K., Echigoya J., Enoki H., Hirai T., and Shindo Y. J. Alloys Compd., 1994, 209, (1–2), 279 LINK http://dx.doi.org/10.1016/0925-8388(94)91114-2 [Google Scholar]
  127. Murakami H., Yano T., and Sodeoka S. Mater. Trans., 2004, 45, (9), 2886 LINK http://dx.doi.org/10.2320/matertrans.45.2886 [Google Scholar]
  128. Wu F., Murakami H., and Suzuki A. Surf. Coat. Technol., 2003, 168, (1), 62 LINK http://dx.doi.org/10.1016/S0257-8972(03)00009-4 [Google Scholar]
  129. Kamiya K., and Murakami H. J. Japan Inst. Metals Mater., 2005, 69, (1), 73 LINK http://dx.doi.org/10.2320/jinstmet.69.73 [Google Scholar]
  130. Isogawa S., Tojo H., Chayahara A., and Horino Y. Surf. Coat. Technol., 2002, 158–159, 186 LINK http://dx.doi.org/10.1016/S0257-8972(02)00202-5 [Google Scholar]
  131. Lee I.-S., Whang C.-N., Park J.-C., Lee D.-H., and Seo W.-S. Biomater., 2003, 24, (13), 2225 LINK http://dx.doi.org/10.1016/S0142-9612(03)00025-5 [Google Scholar]
  132. Jones T. Metal Finish., 2004, 102, (6), 87 LINK http://dx.doi.org/10.1016/S0026-0576(04)82560-1 [Google Scholar]
  133. Cohen Sagiv M., Eliaz N., and Gileadi E. Electrochim. Acta, 2013, 88, 240 LINK http://dx.doi.org/10.1016/j.electacta.2012.10.094 [Google Scholar]
  134. Wu W.-P., Eliaz N., and Gileadi E. J. Electrochem. Soc., 2015, 162, (1), D20 LINK http://dx.doi.org/10.1149/2.0281501jes [Google Scholar]
  135. Qian J.-G., Xiao S.-M., Zhao T., and Luan H.-J. Rare Metal Mater. Eng., 2012, 41, (7), 1139 LINK http://dx.doi.org/10.1016/S1875-5372(12)60057-5 [Google Scholar]
  136. Qian J.-G., Yin Y., Li X., and Li T.-J. Trans. Nonferrous Metals Soc. China, 2015, 25, (5), 1685 LINK http://dx.doi.org/10.1016/S1003-6326(15)63773-6 [Google Scholar]
  137. Qian J.-G., and Zhao T. Trans. Nonferrous Metals Soc. China, 2012, 22, (11), 2855 LINK http://dx.doi.org/10.1016/S1003-6326(11)61542-2 [Google Scholar]
  138. Saltykova N. A., and Portnyagin O. V. Russ. J. Electrochem., 2001, 37, (9), 924 LINK http://dx.doi.org/10.1023/A:1011944226271 [Google Scholar]
  139. Timofeev N. I., Baraboshkin V. E., Saltykova N. A., Ohriner E. K., Lanam R. D., Panfilov P., and Harada H. ‘Production of Iridium Crucibles by Electrolysis of Molten Salts’, in “Iridium”, eds. Proceedings of the International Symposium held During the 129th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society (TMS), Nashville, Tennessee, USA, TMS, Warrendale, Pennsylvania, 2000, pp. 175179 [Google Scholar]
  140. Saltykova N. A. J. Min. Metall. B: Metall., 2003, 39, (1–2), 201 LINK http://dx.doi.org/10.2298/JMMB0302201S [Google Scholar]
  141. Saltykova N. A., Kotovskii S. N., Portnyagin O. V., Baraboshkin A. N., and Esina N. O. Sov. Electrochem., 1990, 26, (3), 338 [Google Scholar]
  142. Huang Y.-L., Bai S.-X., Zhang H., and Ye Y.-C. Appl. Surf. Sci., 2015, 328, 436 LINK http://dx.doi.org/10.1016/j.apsusc.2014.12.063 [Google Scholar]
  143. Reed B. D., and Dickerson R. ‘Testing of Electroformed Deposited Iridium/Powder Metallurgy Rhenium Rockets’, NASA Technical Memorandum 107172, National Aeronautics and Space Administration, Cleveland, Ohio, USA, 1995 LINK http://ntrs.nasa.gov/search.jsp?R=19960049927 [Google Scholar]
  144. Wang L.-B., Chen Z.-F., Zhang P.-Z., Wu W.-P., and Zhang Y. J. Coat. Technol. Res., 2009, 6, (4), 517 LINK http://dx.doi.org/10.1007/s11998-008-9123-7 [Google Scholar]
  145. Wang L.-B., Chen Z.-F., Zhang Y., and Wu W.-P. Int. J. Refract. Metals Hard Mater., 2009, 27, (3), 590 LINK http://dx.doi.org/10.1016/j.ijrmhm.2008.09.004 [Google Scholar]
  146. Zhang Y., Chen Z.-F., Wang L.-B., Wu W.-P., and Fang D. J. Coat. Technol. Res., 2009, 6, (2), 237 LINK http://dx.doi.org/10.1007/s11998-008-9109-5 [Google Scholar]
  147. Cong X.-N., Chen Z.-F., Wu W.-P., Xu J., and Boafo F. E. Appl. Surf. Sci., 2012, 258, (12), 5135 LINK http://dx.doi.org/10.1016/j.apsusc.2012.01.149 [Google Scholar]
  148. Cong X.-N., Chen Z.-F., Wu W.-P., Chen Z. F., and Boafo F. E. Acta Astronaut., 2012, 79, 88 LINK http://dx.doi.org/10.1016/j.actaastro.2012.02.028 [Google Scholar]
  149. Wu W.-P., Chen Z.-F., Cong X.-N., Sudarshan T. S., Jeandin M., and Fridrici V. ‘Protective Ir-Zr and Ir Coatings for Refractory Metals’, 26th International Conference on Surface Modification Technologies, Écully-Lyon, France, 20th–22nd June, 2012, in “Surface Modification Technologies XXVI: Proceedings of the Twenty Sixth International Conference on Surface Modification Technologies”, eds. Valardocs, Chennai, India, 2013, pp. 395406 [Google Scholar]
  150. Wang J.-M., Zhang Z.-W., Xu Z.-H., Lin X., Wu W.-P., and Chen Z. F. Corros. Eng. Sci. Technol., 2011, 46, (6), 732 LINK http://dx.doi.org/10.1179/1743278210Y.0000000023 [Google Scholar]
  151. Zhang Z.-W., Xu Z.-H., Wang J.-M., Wu W.-P., and Chen Z.-F. J. Mater. Eng. Perf., 2012, 21, (10), 2085 LINK http://dx.doi.org/10.1007/s11665-012-0133-3 [Google Scholar]
  152. Wu W.-P., Chen Z.-F., and Liu Y. Plasma Sci. Technol., 2012, 14, (10), 909 LINK http://dx.doi.org/10.1088/1009-0630/14/10/10 [Google Scholar]
  153. Wu W.-P., and Chen Z.-F. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2012, 27, (4), 652 LINK http://dx.doi.org/10.1007/s11595-012-0522-3 [Google Scholar]
  154. Wu W.-P., Chen Z.-F., Cheng X.-W., and Wang Y.-W. Nucl. Instr. Meth. Phys. Res. Sect. B: Beam Int. Mater. Atoms, 2013, 307, 315 LINK http://dx.doi.org/10.1016/j.nimb.2012.12.069 [Google Scholar]
  155. Wu W.-P., Chen Z.-F., and Lin X. Adv. Mater. Res., 2011, 189–193, 688 LINK http://dx.doi.org/10.4028/www.scientific.net/AMR.189-193.688 [Google Scholar]
  156. Lowndes D. H., Geohegan D. B., Puretzky A. A., Norton D. P., and Rouleau C. M. Science, 1996, 273, (5277), 898 LINK http://dx.doi.org/10.1126/science.273.5277.898 [Google Scholar]
  157. Galeazzi M., Chen C., Cohn J. L., and Gundersen J. O. Nucl. Instrum. Meth. Phys. Res. Sect. A: Accel., Spectr., Detect. Assoc. Equip., 2004, 520, (1–3), 293 LINK http://dx.doi.org/10.1016/j.nima.2003.11.241 [Google Scholar]
  158. Chen C.-L. ‘Iridium Thin Films Deposited via Pulsed Laser Deposition’, PhD Thesis, University of Miami, USA, Dissertations from ProQuest, Paper 2456, 2006 LINK http://scholarlyrepository.miami.edu/dissertations/2456/ [Google Scholar]
  159. Herzig H. Platinum Metals Rev., 1983, 27, (3), 108 LINK http://www.technology.matthey.com/article/27/3/108-109/ [Google Scholar]
  160. Bauer T., Gsell S., Schreck M., Goldfuß J., Lettieri J., Schlom D. G., and Stritzker B. Diam. Relat. Mater., 2005, 14, (3–7), 314 LINK http://dx.doi.org/10.1016/j.diamond.2004.10.028 [Google Scholar]
  161. Li H.-Q., Chen D.-Y., Xu F.-T., Jia Z.-H., and Zhang X.-H. Aerospace Mater. Technol., 2013, (6), 64 (in Chinese) LINK http://en.cnki.com.cn/Article_en/CJFDTotal-YHCG201306014.htm [Google Scholar]
  162. Milewski J. O., Thoma D. J., Fonseca J. C., and Lewis G. K. Mater. Manuf. Process., 1998, 13, (5), 719 LINK http://dx.doi.org/10.1080/10426919808935294 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651317X693606
Loading
/content/journals/10.1595/205651317X693606
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error