Skip to content
1887
Volume 61, Issue 4
  • ISSN: 2056-5135

Abstract

We herein report on the effect of gamma ray radiation on platinum, osmium, rhodium and palladium salt solutions for synthesis of nanoparticles. Pt, Os, Rh and Pd salt solutions were exposed to intense gamma ray irradiation with doses varying from 70 to 120 kGy. The metal ion salt solutions were easily converted into metal nanoparticles using this radiolysis method. The radiolytic conversion effect produced metal nanoparticles suspended in solution. For Pt, Pd and Rh a metal coating on the edges of the polypropylene tube used as a container was unexpectedly observed but not for the Os solution. X-Ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analyses confirmed that both the coating and the metal nanoparticles correspond to the pure metal coming from the reduction of the initial salt. Quantitative analysis of the XRD patterns shows information about the size and stress of the converted metals. The production of a metal coating on polypropylene plastic tubes by gamma ray irradiation presents an interesting alternative to conventional techniques of metal deposition especially for coating the inner part of a tube.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X696207
2017-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/61/4/Cele_16a_Imp.html?itemId=/content/journals/10.1595/205651317X696207&mimeType=html&fmt=ahah

References

  1. “Processing and Finishing of Polymeric Materials”, in 2 volumes, John Wiley & Sons, Inc, New Jersey, USA, 2011, 1488 pp [Google Scholar]
  2. Volova T. “Polyhydroxyalkanoates – Plastic Materials of the 21st Century: Production, Properties and Applications”, Nova Science Publishers Inc, New York, USA, 2004, 282 pp [Google Scholar]
  3. Klein R. “Laser Welding of Plastics: Materials, Processes and Industrial Applications”, Wiley-VCH Verlag & Co KGaA, Weinheim, Germany, 2012, 260 pp LINK https://doi.org/10.1002/9783527636969 [Google Scholar]
  4. “Handbook of Polyethylene Pipe”, 2nd Edn., Plastics Pipe Institute, Texas, USA, 2009, 620 pp LINK http://plasticpipe.org/publications/pe-handbook.html [Google Scholar]
  5. Crawford R. J. ‘General Properties of Plastics’, in “Plastics Engineering”, 3rd Edn., Elsevier Butterworth-Heinemann, Oxford, UK, 1998, 522 pp LINK https://doi.org/10.1016/B978-075063764-0/50003-0 [Google Scholar]
  6. Delcourt M.-O., Belloni J., Marignier J.-L., Mory C., and Colliex C. Radiat. Phys. Chem., 1984, 23, (4), 485 LINK https://doi.org/10.1016/0146-5724(84)90142-0 [Google Scholar]
  7. Marignier J. L., Belloni J., Delcourt M. O., and Chevalier J. P. Nature, 1985, 317, (6035), 344 LINK http://dx.doi.org/10.1038/317344a0 [Google Scholar]
  8. Belloni J., Marignier J.-L., Delcourt M.-O., and Minana M. National Center for Scientific Research, ‘Non-noble Metal Micro-aggregates, Process for their Manufacture and their Use in the Catalysis of the Photoreduction of Water’, French Patent 8,409,196; 1985 [Google Scholar]
  9. Swallow A. J. “Radiation Chemistry: An Introduction”, Longman Group Ltd, London, UK, 1973, 275 pp [Google Scholar]
  10. Bruneaux J., Cachet H., Froment M., Amblard J., Belloni J., and Mostafavi M. Electrochim. Acta, 1987, 32, (10), 1533 LINK https://doi.org/10.1016/0013-4686(87)85098-3 [Google Scholar]
  11. ‘Platinum-Group Metals’, in “Mineral Commodities Summaries 2006”, US Geological Survey (USGS), Reston, Virginia, USA, 2006, p. 126 LINK http://minerals.usgs.gov/minerals/pubs/mcs/2006/mcs2006.pdf [Google Scholar]
  12. Hunt L. B., and Lever F. M. Platinum Metals Rev., 1969, 13, (4), 126 LINK http://www.technology.matthey.com/article/13/4/126-138/ [Google Scholar]
  13. Colacot T. J. Platinum Metals Rev., 2002, 46, (2), 82 LINK http://www.technology.matthey.com/article/46/2/82-83/ [Google Scholar]
  14. Roy K., and Lahiri S. Anal. Chem., 2008, 80, (19), 7504 LINK https://doi.org/10.1021/ac800593u [Google Scholar]
  15. Amblard J., Platzer O., Ridard J., and Belloni J. J. Phys. Chem., 1992, 96, (5), 2341 LINK https://doi.org/10.1021/j100184a060 [Google Scholar]
  16. Treguer M., de Cointet C., Remita H., Khatouri J., Mostafavi M., Amblard J., Belloni J., and de Keyzer R. J. Phys. Chem. B, 1998, 102, (22), 4310 LINK https://doi.org/10.1021/jp981467n [Google Scholar]
  17. Doudna C. M., Bertino M. F., Blum F. D., Tokuhiro A. T., Lahiri-Dey D., Chattopadhyay S., and Terry J. J. Phys. Chem. B., 2003, 107, (13), 2966 LINK https://doi.org/10.1021/jp0273124 [Google Scholar]
  18. Mirdamadi-Esfahani M., Mostafavi M., Keita B., Nadjo L., Kooyman P., and Remita H. Gold Bull., 2010, 43, (1), 49 LINK https://doi.org/10.1007/BF03214966 [Google Scholar]
  19. Yang Y., Cheng P., and Huang S. J. Alloys Compd., 2016, 688, (Part A), 1172 LINK https://doi.org/10.1016/j.jallcom.2016.07.157 [Google Scholar]
  20. Fan T.-E., Liu T.-D., Zheng J.-W., Shao G.-F., and Wen Y.-H. J. Alloys Compd., 2016, 685, 1008 LINK http://dx.doi.org/10.1016/j.jallcom.2016.06.281 [Google Scholar]
  21. Belloni J., Mostafavi M., Remita H., Marignier J.-L., and Delcourt M.-O. New J. Chem., 1998, 22, (11), 1239 LINK http://dx.doi.org/10.1039/A801445K [Google Scholar]
  22. Soroushian B., Lampre I., Belloni J., and Mostafavi M. Radiat. Phys. Chem., 2005, 72, (2–3), 111 LINK https://doi.org/10.1016/j.radphyschem.2004.02.009 [Google Scholar]
  23. Belloni J. Catal. Today, 2006, 113, (3–4), 141 LINK https://doi.org/10.1016/j.cattod.2005.11.082 [Google Scholar]
  24. Roy K., and Lahiri S. Green Chem., 2006, 8, (12), 1063 LINK https://doi.org/10.1039/B605625C [Google Scholar]
  25. Temgire M. K., Bellare J., and Joshi S. S. Adv. Phys. Chem., 2011, 249097 LINK http://dx.doi.org/10.1155/2011/249097 [Google Scholar]
  26. Henglein A. Chem. Rev., 1989, 89, (8), 1861 LINK https://doi.org/10.1021/cr00098a010 [Google Scholar]
  27. Choofong S., Suwanmala P., and Pasanphan W. ‘Water-Soluble Chitosan-Gold Composite Nanoparticles: Preparation by Radiolysis Method’, The 18th International Conference on Composite Materials, Jeju, Korea, 21st–26th August, 2011, 6 pp LINK http://www.iccm-central.org/Proceedings/ICCM18proceedings/data/2.%20Oral%20Presentation/Aug22%28Monday%29/M15%20Green%20Composites/M15-6-IF0463.pdf [Google Scholar]
  28. Rao Y. N., Banerjee D., Datta A., Das S. K., Guin R., and Saha A. Radiat. Phys. Chem., 2010, 79, (12), 1240 LINK https://doi.org/10.1016/j.radphyschem.2010.07.004 [Google Scholar]
  29. Biswal J., Ramnani S. P., Tewari R., Dey G. K., and Sabharwal S. Radiat. Phys. Chem., 2010, 79, (4), 441 LINK https://doi.org/10.1016/j.radphyschem.2009.11.004 [Google Scholar]
  30. Gachard E., Remita H., Khatouri J., Keita B., Nadjo L., and Belloni J. New J. Chem., 1998, 22, (11), 1257 LINK https://doi.org/10.1039/A804445G [Google Scholar]
  31. Krklješ A. “Radiolytic Synthesis of Nanocomposites Based on Noble Metal Nanoparticles and Natural Polymer, and their Application as Biomaterial”, Report No. IAEA–RC–1207.1, International Atomic Energy Agency (IAEA), Vienna, Austria, 2011, 12 pp LINK http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/45/091/45091361.pdf [Google Scholar]
  32. Chen Q., Shi J., Zhao R., and Shen X. “Radiolytic Syntheses of Nanoparticles and Inorganic-Polymer Hybrid Microgels”, Report No. IAEA–RC–1124.2, International Atomic Energy Agency (IAEA), Vienna, Austria, 2010, 10 pp LINK http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/46/015/46015352.pdf?r=1 [Google Scholar]
  33. Hornebecq V., Antonietti M., Cardinal T., and Treguer-Delapierre M. Chem. Mater., 2003, 15, (10), 1993 LINK https://doi.org/10.1021/cm021353v [Google Scholar]
  34. Belapurkar A. D., Kapoor S., Kulshreshtha S. K., and Mittal J. P. Mater. Res. Bull., 2001, 36, (1–2), 145 LINK https://doi.org/10.1016/S0025-5408(01)00499-8 [Google Scholar]
  35. Rojas J. V., and Castano C. H. J. Radioanal. Nucl. Chem., 2014, 302, (1), 555 LINK https://doi.org/10.1007/s10967-014-3291-y [Google Scholar]
  36. Zhang X., Ye Y., Wang H., and Yao S. Radiat. Phys. Chem., 2010, 79, (10), 1058 LINK https://doi.org/10.1016/j.radphyschem.2010.04.012 [Google Scholar]
  37. Rojas J. V., and Castano C. H. Radiat. Phys. Chem., 2012, 81, (1), 16 LINK https://doi.org/10.1016/j.radphyschem.2011.08.010 [Google Scholar]
  38. Griffith W. P. Q. Rev. Chem. Soc., 1965, 19, (3), 254 LINK https://doi.org/10.1039/QR9651900254 [Google Scholar]
  39. Arblaster J. W. Platinum Metals Rev., 1989, 33, (1), 14 LINK http://www.technology.matthey.com/article/33/1/14-16/ [Google Scholar]
  40. Arblaster J. W. Platinum Metals Rev., 1995, 39, (4), 164 LINK http://www.technology.matthey.com/article/39/4/164-164/ [Google Scholar]
  41. Smith I. C., Carson B. L., and Ferguson T. L. Environ. Health Perspect., 1974, 8, 201 LINK https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1474945/pdf/envhper00498-0203.pdf [Google Scholar]
  42. Lutterotti L., Matthies S., and Wenk H. R. ‘MAUD: A Friendly Java Program for Material Analysis Using Diffraction’, Newsletter, No. 21, International Union of Crystallography, Commission on Powder Diffraction, Stuttgart, Germany, 1999, p. 14 LINK http://www.mx.iucr.org/iucr-top/comm/cpd/html/newsletter21.html [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651317X696207
Loading
/content/journals/10.1595/205651317X696207
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error