Skip to content
1887
Volume 62, Issue 1
  • ISSN: 2056-5135
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X696261
2018-01-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/1/Darkwa_16a_Imp.html?itemId=/content/journals/10.1595/205651317X696261&mimeType=html&fmt=ahah

References

  1. “Key World Energy Statistics 2016”, International Energy Agency, Paris, France, 2016, 77 pp LINK https://www.iea.org/publications/freepublications/publication/KeyWorld2016.pdf [Google Scholar]
  2. and van Santen R. A. “Catalysis for Renewables: From Feedstock to Energy Production”, eds. Centi G., Wiley-VCH Verlag GmbH and Co KGaA, Weinheim, Germany, 2007, pp. 146 [Google Scholar]
  3. “World Energy Outlook 2016”, International Energy Agency, Paris, France, 2016 LINK https://www.iea.org/publications/freepublications/publication/WorldEnergyOutlook2016ExecutiveSummaryEnglish.pdf [Google Scholar]
  4. Corma A., Iborra S., and Velty A. Chem. Rev., 2007, 107, (6), 2411 LINK https://doi.org/0.1021/cr050989d [Google Scholar]
  5. Chheda J. N., Huber G. W., and Dumesic J. A. Angew. Chem. Int. Ed., 2007, 46, (38), 7164 LINK https://doi.org/10.1002/anie.200604274 [Google Scholar]
  6. Grubber P. R., and Kamm M. “Biorefineries – Industrial Processes and Products: Status Quo and Future Directions”, eds. Kamm B., 2, Wiley-VCH Verlag GmbH and Co KGaA, Weinheim, Germany, 2006, pp. 1407 [Google Scholar]
  7. Key R. E., and Bozell J. J. ACS Sustainable Chem. Eng., 2016, 4, (10), 5123 LINK https://doi.org/10.1021/acssuschemeng.6b01319 [Google Scholar]
  8. Zhou S., Xue Y., Sharma A., and Bai X. ACS Sustainable Chem. Eng., 2016, 4, (12), 6608 LINK https://doi.org/10.1021/acssuschemeng.6b01488 [Google Scholar]
  9. Robinson A. M., Hensley J. E., and Medlin J. W. ACS Catal., 2016, 6, (8), 5026 LINK https://doi.org/10.1021/acscatal.6b00923 [Google Scholar]
  10. Tuck C. O., Pérez E., Horvárth I. T., Sheldon R. A., and Poliakoff M. Science, 2012, 337, (6095), 695 LINK https://doi.org/10.1126/science.1218930 [Google Scholar]
  11. Carriquiry M. A., Du X., and Timilsina G. R. Energ. Policy, 2011, 39, (7), 4222 LINK https://doi.org/10.1016/j.enpol.2011.04.036 [Google Scholar]
  12. Dutta S. ChemSusChem, 2012, 5, (11), 2125 LINK https://doi.org/10.1002/cssc.201200596 [Google Scholar]
  13. Deuss P. J., Barta K., and de Vries J. G. Catal. Sci. Technol., 2014, 4, (5), 1174 LINK https://doi.org/10.1039/C3CY01058A [Google Scholar]
  14. Chheda J. N., and Dumesic J. A. Catal. Today, 2007, 123, (1–4), 59 LINK https://doi.org/10.1016/j.cattod.2006.12.006 [Google Scholar]
  15. Klemm D., Heublein B., Fink H.-P., and Bohn A. Angew. Chem. Int. Ed., 2005, 44, (22), 3358 LINK https://doi.org/10.1002/anie.200460587 [Google Scholar]
  16. Sànchez Ó. J., and Cardona C. A. Bioresource Technol., 2008, 99, (13), 5270 LINK https://doi.org/10.1016/j.biortech.2007.11.013 [Google Scholar]
  17. ‘First Commercial-Scale Cellulosic Ethanol Plant in the U.S. Opens for Business’, Koninklijke DSM NV, Heerlen, Netherlands, 3rd September, 2014 LINK http://www.dsm.com/corporate/media/informationcenter-news/2014/09/29-14-first-commercial-scale-cellulosic-ethanol-plant-in-the-united-states-open-for-business.html [Google Scholar]
  18. ‘A New Era Begins: Crescentino: World’s First Advanced Biofuels Facility’, ETIP Bioenergy-SABS:http://www.biofuelstp.eu/presentations/crescentino-presentation.pdf (Accessed on 17th August 2017) [Google Scholar]
  19. American Process Inc, Atlanta, USA:http://www.americanprocess.com/ (Accessed on 17th August 2017)
  20. ‘Commercial Cellulosic Ethanol Plants in Brazil’ and ‘Cellulosic Ethanol in Canada’, ETIP Bioenergy-SABS:http://www.biofuelstp.eu/cellulosic-ethanol.html#ce8 (Accessed on 17th August 2017) [Google Scholar]
  21. Anellotech Inc, New York, USA:http://anellotech.com/technology (Accessed on 25th August 2017)
  22. Rosatella A. A., Simeonov S. P., Frade R. F. M., and Afonso C. A. M. Green Chem., 2011, 13, (4), 75 LINK https://doi.org/10.1039/C0GC00401D [Google Scholar]
  23. Alonso D. M., Bond J. Q., and Dumesic J. A. Green Chem., 2010, 12, (9), 1493 LINK https://doi.org/10.1039/C004654J [Google Scholar]
  24. ‘Cellulosic Ethanol Technology: Ongoing Research and Novel Pathways’, ETIP Bioenergy-SABS:http://www.biofuelstp.eu/cellulosic-ethanol.html#ce6 (Accessed on 17th August 2017) [Google Scholar]
  25. ‘Iogen Announces New Drop-In Cellulosic Biofuel’, Iogen Corp, Ottawa, Canada, 22nd January, 2014 LINK http://www.iogen.ca/media-resources/press_releases/2014_Iogen_pr_jan22.pdf [Google Scholar]
  26. Huber G. W., and Dumesic J. A. Catal. Today, 2006, 111, (1–2), 119 LINK https://doi.org/10.1016/j.cattod.2005.10.010 [Google Scholar]
  27. Vilcocq L., Cabiac A., Especel C., Guillon E., and Duprez D. Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles, 68, (5), 841 LINK https://doi.org/10.2516/ogst/2012073 [Google Scholar]
  28. Zhang Y.-H. P., and Lynd L. R. Biotechnol. Bioeng., 2004, 88, (7), 797 LINK https://doi.org/10.1002/bit.20282 [Google Scholar]
  29. James O. O., Maity S., Usman L. A., Ajanaku K. O., Ajani O. O., Siyanbola T. O., Sahu S., and Chaubey R. Energy Environ. Sci., 2010, 3, (12), 1833 LINK https://doi.org/10.1039/B925869H [Google Scholar]
  30. Faith W. L. Ind. Eng. Chem., 1945, 37, (1), 9 LINK https://doi.org/10.1021/ie50421a004 [Google Scholar]
  31. Enslow K. R., and Bell A. T. RSC Adv., 2012, 2, (26), 10028 LINK https://doi.org/10.1039/C2RA21650G [Google Scholar]
  32. Kapu N. S., and Trajano H. L. Biofuels, Bioprod. Bioref., 2014, 8, (6), 857 LINK https://doi.org/10.1002/bbb.1517 [Google Scholar]
  33. Li C., and Zhao Z. K. Adv. Synth. Catal., 2007, 349, (11–12), 1847 LINK https://doi.org/10.1002/adsc.200700259 [Google Scholar]
  34. Moreau C., Durand R., Duhamet J., and Rivalier P. J. Carbohyd. Chem., 1997, 16, (4–5), 709 LINK https://doi.org/10.1080/07328309708007350 [Google Scholar]
  35. Linnett P. E., and Sanders J. P. M. Gist-Brocades NV, ‘Process for the Preparation of Oligosaccharides-Containing Products from Biomass’, US Patent Appl. 1987/4,677,198 LINK https://doi.org/10.1021/ie50327a002 [Google Scholar]
  36. Bergius F. Ind. Eng. Chem., 1937, 29, (3), 247 [Google Scholar]
  37. Swatloski R. P., Spear S. K., Holbrey J. D. R., and Rogers R. D. J. Am. Chem. Soc., 2002, 124, (18), 4974 LINK https://doi.org/10.1021/ja025790m [Google Scholar]
  38. de Oliveira H. F. N., Farés C., and Rinaldi R. Chem. Sci., 2015, 6, (9), 5215 LINK https://doi.org/10.1039/C5SC00393H [Google Scholar]
  39. Tagusagawa C., Takagaki A., Iguchi A., Takanabe K., Kondo J. N., Ebitani K., Hayashi S., Tatsumi T., and Domen K. Angew. Chem. Int. Ed., 2010, 49, (6), 1128 LINK https://doi.org/10.1002/anie.200904791 [Google Scholar]
  40. Jiang Y., Li X., Wang X., Meng L., Wang H., Peng G., Mang X., and Mu X. Green Chem., 2012, 14, (8), 2162 LINK https://doi.org/10.1039/C2GC35306G [Google Scholar]
  41. Takagaki A., Tagusagawa C., and Domen K. Chem. Commun., 2008, (42), 5363 LINK https://doi.org/10.1039/B810346A [Google Scholar]
  42. Lai D.-M., Deng L., Li J., Liao B., Guo Q.-X., and Fu Y. ChemSusChem, 2011, 4, (1), 55 LINK https://doi.org/10.1002/cssc.201000300 [Google Scholar]
  43. Rinaldi R., Palkovits R., and Schüth F. Angew. Chem. Int. Ed., 2008, 47, (42), 8047 LINK https://doi.org/10.1002/anie.200802879 [Google Scholar]
  44. Shimizu K.-I., Furukawa H., Kobayashi N., Itaya Y., and Satsuma A. Green Chem., 2009, 11, (10), 1627 LINK https://doi.org/10.1039/B913737H [Google Scholar]
  45. Onda A., Ochi T., and Yanagisawa K. Green Chem., 2008, 10, (10), 1033 LINK https://doi.org/10.1039/B808471H [Google Scholar]
  46. Zhuo K., Du Q., Bai G., Wang C., Chen Y., and Wang J. Carbohyd. Polym., 2015, 115, 49 LINK https://doi.org/10.1016/j.carbpol.2014.08.078 [Google Scholar]
  47. Liu Y., Xiao W., Xia S., and Ma P. Carbohyd. Polym., 2013, 92, (1), 218 LINK https://doi.org/10.1016/j.carbpol.2012.08.095 [Google Scholar]
  48. Zakrzewska M. E., Bogel-Łukasik E., and Bogel-Łukasik R. Energy Fuels, 2010, 24, (2), 737 LINK https://doi.org/10.1021/ef901215m [Google Scholar]
  49. Kobayashi H., Komanoya T., Hara K., and Fukuoka A. ChemSusChem, 2010, 3, (4), 440 LINK https://doi.org/10.1002/cssc.200900296 [Google Scholar]
  50. Komanoya T., Kobayashi H., Hara K., Chun W.-J., and Fukuoka A. Appl. Catal. A: Gen., 2011, 407, (1–2), 188 LINK https://doi.org/10.1016/j.apcata.2011.08.039 [Google Scholar]
  51. Yuan Y., Wang J., Fu N., and Zang S. Catal. Commun., 2016, 76, 46 LINK https://doi.org/10.1016/j.catcom.2015.12.024 [Google Scholar]
  52. Wang J., Zhou M., Yuan Y., Zhang Q., Fang X., and Zang S. Bioresour. Technol., 2015, 197, 42 LINK https://doi.org/10.1016/j.biortech.2015.07.110 [Google Scholar]
  53. Su Y., Brown H. M., Li G., Zhou X.-D., Amonette J. E., Fulton J. L., Camaioni D. M., and Zhang Z. C. Appl. Catal. A: Gen., 2011, 391, (1–2), 436 LINK https://doi.org/10.1016/j.apcata.2010.09.021 [Google Scholar]
  54. Kroh L. W. Food Chem., 1994, 51, (4), 373 LINK https://doi.org/10.1016/0308-8146(94)90188-0 [Google Scholar]
  55. Janzowski C., Glaab V., Samimi E., Schlatter J., and Eisenbrand G. Food Chem. Toxicol., 2000, 38, (9), 801 LINK https://doi.org/10.1016/S0278-6915(00)00070-3 [Google Scholar]
  56. Arribas-Lorenzo G., and Morales F. J. Food Chem. Toxicol., 2010, 48, (2), 644 LINK https://doi.org/10.1016/j.fct.2009.11.046 [Google Scholar]
  57. Husøy T., Haugen M., Murkovic M., Jöbstl D., Stølen L. H., Bjellaas J., Rønningborg C., Glatt H., and Alexander J. Food Chem. Toxicol., 2008, 46, (12), 3697 LINK https://doi.org/10.1016/j.fct.2008.09.048 [Google Scholar]
  58. Feather M. S., and Harris J. F. Adv. Carbohyd. Chem. Biochem., 1973, 28, 161 LINK https://doi.org/10.1016/S0065-2318(08)60383-2 [Google Scholar]
  59. Newth F. H. Adv. Carbohyd. Chem., 1951, 6, 83 LINK https://doi.org/10.1016/S0096-5332(08)60064-8 [Google Scholar]
  60. Anet E. F. L. J. Adv. Carbohyd. Chem., 1964, 19, 181 LINK https://doi.org/10.1016/S0096-5332(08)60282-9 [Google Scholar]
  61. Antal M. J., Mok W. S. L., and Richards G. N. Carbohyd. Res., 1990, 199, (1), 91 LINK https://doi.org/10.1016/0008-6215(90)84096-D [Google Scholar]
  62. Román-Leshkov Y., and Davis M. E. ACS Catal., 2011, 1, (11), 1566 LINK https://doi.org/10.1021/cs200411d [Google Scholar]
  63. Knill C. J., and Kennedy J. F. Carbohyd. Polym., 2003, 51, (3), 281 LINK https://doi.org/10.1016/S0144-8617(02)00183-2 [Google Scholar]
  64. Yang B. Y., and Montgomery R. Carbohyd. Res., 1996, 280, (1), 27 LINK https://doi.org/10.1016/0008-6215(95)00294-4 [Google Scholar]
  65. Speck J. C., and Tipson R. S. ‘The Lobry DeBruyn-Alberda Van Ekenstein Transformation’, in “Advances in Carbohydrate Chemistry”, eds. Wolfrom M. L., 13, Academic Press Inc, New York, USA, 1958, pp. 63103 [Google Scholar]
  66. Liu C., Carraher J. M., Swedberg J. L., Herndon C. R., Fleitman C. N., and Tessonnier J.-P. ACS Catal., 2014, 4, (12), 4295 LINK https://doi.org/10.1021/cs501197w [Google Scholar]
  67. Despax S., Estrine B., Hoffmann N., Le Bras J., Marinkovic S., and Muzart J. Catal. Commun., 2013, 39, 35 LINK https://doi.org/10.1016/j.catcom.2013.05.004 [Google Scholar]
  68. Choudhary V., Sandler S. I., and Vlachos D. G. ACS Catal., 2012, 2, (9), 2022 LINK https://doi.org/10.1021/cs300265d [Google Scholar]
  69. Pagán-Torres Y. J., Wang T., Gallo J. M. R., Shanks B.H., and Dumesic J. A. ACS Catal., 2012, 2, (6), 930 LINK https://doi.org/10.1021/cs300192z [Google Scholar]
  70. van Putten R-J., van der Waal J. C., de Jong E., Rasrendra C. B., Heeres H. J., and de Vries J. G. Chem. Rev., 2013, 113, (3), 1499 LINK https://doi.org/10.1021/cr300182k [Google Scholar]
  71. Zhao H., Holladay J. E., Brown H., and Zhang Z. C. Science, 2007, 316, (5831), 1597 LINK https://doi.org/10.1126/science.1141199 [Google Scholar]
  72. Su Y., Brown H. M., Huang X., Zhou X.-D., Amonette J. E., and Zhang Z. C. Appl. Catal. A: Gen., 2009, 361, (1–2), 117 LINK https://doi.org/10.1016/j.apcata.2009.04.002 [Google Scholar]
  73. Fan C., Guan H., Zhang H., Wang J., Wang S., and Wang X. Biomass Bioenerg., 2011, 35, (7), 2659 LINK https://doi.org/10.1016/j.biombioe.2011.03.004 [Google Scholar]
  74. Kim B., Jeong J., Lee D., Kim S., Yoon H.-J., Lee Y.-S., and Cho J. K. Green Chem., 2011, 13, (6), 1503 LINK https://doi.org/10.1039/C1GC15152E [Google Scholar]
  75. Ding Z.-D., Shi J.-C., Xiao J.-J., Gu W.-X., Zheng C.-G., and Wang H.-J. Carbohyd. Polym., 2012, 90, (2), 792 LINK https://doi.org/10.1016/j.carbpol.2012.05.083 [Google Scholar]
  76. Qi X., Watanabe M., Aida T. M., and Smith R. L. Green Chem., 2009, 11, (9), 1327 LINK https://doi.org/10.1039/B905975J [Google Scholar]
  77. Wei Z., Li Y., Thushara D., Liu Y., and Ren Q. J. Taiwan Inst. Chem. Eng., 2011, 42, (2), 363 LINK https://doi.org/10.1016/j.jtice.2010.10.004 [Google Scholar]
  78. Cai C. M., Zhang T., Kumar R., and Wyman C. E. Green Chem., 2013, 15, (11), 3140 LINK https://doi.org/10.1039/C3GC41214H [Google Scholar]
  79. Zhang L., Yu H., Wang P., and Li Y. Bioresource Technol., 2014, 151, 355 LINK https://doi.org/10.1016/j.biortech.2013.10.099 [Google Scholar]
  80. Zhang L., Yu H., Wang P., Dong H., and Peng X. Bioresource Technol., 2013, 130, 110 LINK https://doi.org/10.1016/j.biortech.2012.12.018 [Google Scholar]
  81. Perez F., and Fraga M. A. Green Chem., 2014, 16, (8), 3942 LINK https://doi.org/10.1039/C4GC00398E [Google Scholar]
  82. Win D. T. AU J. Technol., 2005, 8, (4), 185 LINK http://www.journal.au.edu/au_techno/2005/apr05/vol8no4_abstract04.pdf [Google Scholar]
  83. Rapp K. M. Süddeutsche Zucker AG, ‘Process for Preparing Pure 5-Hydroxymethylfurfuraldehyde’, US Patent Appl. 1988/4,740,605 [Google Scholar]
  84. ‘Specifications – 5-Hydroxymethylfurfural’, AVA Biochem BSL AG, Switzerland:http://www.ava-biochem.com/pages/en/products/5-hmf/specifications.php (Accessed on 24th August 2017) [Google Scholar]
  85. Reichert D., Sarich M., and Merz F. Evonik Degussa GmbH, ‘Method for Producing Enantiomer 5-Hydroxymethylfurfural with 5-Acyloxymethylfurfural as Intermediate’, Danish Patent 1,958,944; 2008 [Google Scholar]
  86. Fleche G., Gaset A., Gorrichon J.-P., Truchot E., and Sicard P. Roquette Frères, ‘Process for Manufacturing 5-Hydroxymethylfurfural’, US Patent Appl. 1982/4,339,381 [Google Scholar]
  87. M’Bazoa C., Raymond F., Rigal L., and Gaset A. Furchim, ‘Process for the Manufacture of High Purity Hydroxymethylfurfural (HMF)’, French Patent Appl. 1990/2,669,635 [Google Scholar]
  88. Palkovits R. ChemSusChem, 2015, 8, (5), 755 LINK https://doi.org/10.1002/cssc.201403431 [Google Scholar]
  89. Hu L., Lin L., and Liu S. Ind. Eng. Chem. Res., 2014, 53, 9969 LINK https://doi.org/10.1021/ie5013807 [Google Scholar]
  90. Li X., Jia P., and Wang T. ACS Catal., 2016, 6, 7621 LINK https://doi.org/10.1021/acscatal.6b01838 [Google Scholar]
  91. Román-Leshkov Y., Barnett C. J., Liu Z. Y., and Dumesic J. A. Nature, 2007, 447, 982 LINK https://doi.org/10.1038/nature05923 [Google Scholar]
  92. Bohre A., Dutta S., Saha B., and Abu-Omar M. M. ACS Sustainable Chem. Eng., 2015, 3, (7), 1263 LINK https://doi.org/10.1021/acssuschemeng.5b00271 [Google Scholar]
  93. Binder J. B., and Raines R. T. J. Am. Chem. Soc., 2009, 131, (5), 1979 LINK https://doi.org/10.1021/ja808537j [Google Scholar]
  94. Wang G.-H., Hilgert J., Richter F. H., Wang F., Bongard H.-J., Spliethoff B., Weidenthaler C., and Schüth F. Nature Mater., 2014, 13, (3), 293 LINK https://doi.org/10.1038/nmat3872 [Google Scholar]
  95. Nishimura S., Ikeda N., and Ebitani K. Catal. Today, 2014, 232, 89 LINK https://doi.org/10.1016/j.cattod.2013.10.012 [Google Scholar]
  96. Zu Y., Yang P., Wang J., Liu X., Ren J., Lu G., and Wang Y. Appl. Catal. B: Environ., 2014, 146, 244 LINK https://doi.org/10.1016/j.apcatb.2013.04.026 [Google Scholar]
  97. Saha B., Bohn C. M., and Abu-Omar M. M. ChemSusChem, 2014, 7, (11), 3095 LINK https://doi.org/10.1002/cssc.201402530 [Google Scholar]
  98. Parsell T. H., Owen B. C., Klein I., Jarrell T. M., Marcum C. L., Haupert L. J., Amundson L. M., Kenttämaa H. I., Ribeiro F., Miller J. T., and Abu-Omar M. M. Chem. Sci., 2013, 4, (2), 806 LINK https://doi.org/10.1039/C2SC21657D [Google Scholar]
  99. Sen A., and Yang W. Penn State Research Foundation, ‘One-Step Catalytic Conversion of Biomass-Derived Carbohydrates to Liquid Fuels’, US Patent Appl. 2010/0,307,050 LINK https://doi.org/10.1002/chem.201201522 [Google Scholar]
  100. Grochowski M. R., Yang W., and Sen A. Chem. Eur. J., 2012, 18, (39), 12363 [Google Scholar]
  101. Buntara T., Noel S., Phua P. H., Melián-Cabrera I., de Vries J. G., and Heeres H. J. Angew. Chem. Int. Ed., 2011, 50, (31), 7083 LINK https://doi.org/10.1002/anie.201102156 [Google Scholar]
  102. De S., Dutta S., and Saha B. ChemSusChem, 2012, 5, (9), 1826 LINK https://doi.org/10.1002/cssc.201200031 [Google Scholar]
  103. Jae J., Zhang W., Lobo R. F., and Vlachos D. G. ChemSusChem, 2013, 6, (7), 1158 LINK https://doi.org/10.1002/cssc.201300288 [Google Scholar]
  104. Xiu S., and Shahbazi A. Renew. Sustain. Energy Rev., 2012, 16, (7), 4406 LINK https://doi.org/10.1016/j.rser.2012.04.028 [Google Scholar]
  105. Chen X., Li H., Luo H., and Qiao M. Appl. Catal. A: Gen., 2002, 233, (1–2), 13 LINK https://doi.org/10.1016/S0926-860X(02)00127-8 [Google Scholar]
  106. Sun Q., Liu S., Yao X., Su Y., and Zhang Z. Hecheng Huaxue, 1996, (2), 146 [Google Scholar]
  107. Ren Y., Liu B., Zhang Z., and Lin J. J. Ind. Eng. Chem., 2015, 21, 1127 LINK https://doi.org/10.1016/j.jiec.2014.05.024 [Google Scholar]
  108. Balakrishnan M., Sacia E. R., and Bell A. T. Green Chem., 2012, 14, 1626 LINK https://doi.org/10.1039/C2GC35102A [Google Scholar]
  109. Sitthisa S., Pham T., Prasomsri T., Sooknoi T., Mallinson R. G., and Resasco D. E. J. Catal., 2011, 280, (1), 17 LINK https://doi.org/10.1016/j.jcat.2011.02.006 [Google Scholar]
  110. Pushkarev V. V., Musselwhite N., An K., Alayoglu S., and Somorjai G. A. Nano Lett., 2012, 12, (10), 5196 LINK https://doi.org/10.1021/nl3023127 [Google Scholar]
  111. Nakagawa Y., and Tomishige K. Catal. Today, 2012, 195, (1), 136 LINK https://doi.org/10.1016/j.cattod.2012.04.048 [Google Scholar]
  112. Liu S., Amada Y., Tamura M., Nakagawa Y., and Tomishige K. Green Chem., 2014, 16, (2), 617 LINK https://doi.org/10.1039/C3GC41335G [Google Scholar]
  113. Brentzel Z. J., Barnett K. J., Huang K., Maravelias C. T., Dumesic J. A., and Huber G. W. ChemSusChem, 2017, 10, (7), 1351 LINK https://doi.org/10.1002/cssc.201700178 [Google Scholar]
  114. Hronec M., and Fulajtarová K. Catal. Commun., 2012, 24, 100 LINK https://doi.org/10.1016/j.catcom.2012.03.020 [Google Scholar]
  115. Drent E., and Jager W. W. Shell Oil Company, ‘Hydrogenolsis of Glycerol’, US Patent Appl. 2000/6,080,898 [Google Scholar]
  116. Che T. M. Celanese Corp, ‘Production of Propanediols’, US Patent Appl. 1987/4,642,394 [Google Scholar]
  117. Godwa A. S., Parkin S., and Ladipo F. T. Appl. Organomet. Chem., 2012, 26, (2), 86 LINK https://doi.org/10.1002/aoc.2819 [Google Scholar]
  118. Schlaf M. Dalton Trans., 2006, (39), 4645 LINK https://doi.org/10.1039/B608007C [Google Scholar]
  119. Schlaf M., Ghosh P., Fagan P. J., Hauptman E., and Bullock R. M. Angew. Chem. Int. Ed., 2001, 40, (20), 3887 LINK https://doi.org/10.1002/1521-3773(20011015)40:20<3887::AID-ANIE3887>3.0.CO;2-Q [Google Scholar]
  120. Schlaf M., Ghosh P., Fagan P., Hauptman E., and Bullock R. M. Adv. Synth. Catal., 2009, 351, (5), 789 LINK https://doi.org/10.1002/adsc.200800685 [Google Scholar]
  121. Eremin D. B., and Ananikov V. P. Coord. Chem. Rev., 2017, 346, 2 LINK https://doi.org/10.1016/j.ccr.2016.12.021 [Google Scholar]
  122. Bui L., Luo H., Gunther W. R., and Román-Leshkov Y. Angew. Chem., 2013, 125, (31), 8180 LINK https://doi.org/10.1002/ange.201302575 [Google Scholar]
  123. Winoto H. P., Ahn B. S., and Jae J. J. Ind. Eng. Chem., 2016, 40, 62 LINK https://doi.org/10.1016/j.jiec.2016.06.007 [Google Scholar]
  124. Climent M. J., Corma A., and Iborra S. Green Chem., 2014, 16, (2), 615 LINK https://doi.org/10.1039/C3GC41492B [Google Scholar]
  125. Lange J.-P., Price R., Ayoub P. M., Louis J., Petrus L., Clark L., and Gosselink H. Angew. Chem. Int. Ed., 2010, 49, (26), 4479 LINK https://doi.org/10.1002/anie.201000655 [Google Scholar]
  126. Patil C. R., Niphadkar P. S., Bokade V. V., and Joshi P. N. Catal. Commun., 2014, 43, 188 LINK https://doi.org/10.1016/j.catcom.2013.10.006 [Google Scholar]
  127. Joshi H., Moser B. R., Toler J., Smith W. F., and Walker T. Biomass Bioenerg., 2011, 35, (7), 3262 LINK https://doi.org/10.1016/j.biombioe.2011.04.020 [Google Scholar]
  128. ‘Caserta Production Plant: Innovation and R&D’, GFBIochemicals, Milan, Italy:http://www.gfbiochemicals.com/company/#caserta-plant (Accessed on 25 August 2017) [Google Scholar]
  129. Horváth I. T. Green Chem., 2008, 10, (10), 1024 LINK https://doi.org/10.1039/B812804A [Google Scholar]
  130. Horváth I. T., and Anastas P. T. Chem. Rev., 2007, 107, (6), 2169 LINK https://doi.org/10.1021/cr078380v [Google Scholar]
  131. Fábos V., Mika L. T., and Horváth I. T. Organometallics, 2014, 33, 181 LINK https://doi.org/10.1021/om400938h [Google Scholar]
  132. Bond J. Q., Alonso D. M., Wang D., West R. M., and Dumesic J. A. Science, 2010, 327, (5969), 1110 LINK https://doi.org/10.1126/science.1184362 [Google Scholar]
  133. Wąchała M., Grams J., Kwapiński W., and Ruppert A. M. 2016, 41, (20), 8688 LINK https://doi.org/10.1016/j.ijhydene.2015.12.089
  134. Dunlop A. P., and Madden J. W. ‘Process of Preparing Gammavalerolactone’, US Patent Appl. 1957/2,786,852 [Google Scholar]
  135. Manzer L. E. Appl. Catal. A: Gen., 2004, 272, (1–2), 249 LINK https://doi.org/10.1016/j.apcata.2004.05.048 [Google Scholar]
  136. Bourne R. A., Stevens J. G., Ke J., and Poliakoff M. Chem. Commun., 2007, (44), 4632 LINK https://doi.org/10.1039/B708754C [Google Scholar]
  137. Hengne A. M., Biradar N. S., and Rode C. V. Catal. Lett., 2012, 142, (6), 779 LINK https://doi.org/10.1007/s10562-012-0822-4 [Google Scholar]
  138. Wettstein S. G., Alonso D. M., Chong Y., and Dumersic J. A. Energy Environ. Sci., 2012, 5, (8), 8199 LINK https://doi.org/10.1039/C2EE22111J [Google Scholar]
  139. Yan Z.-P., Lin L., and Liu S. Energy Fuels, 2009, 23, (8), 3853 LINK https://doi.org/10.1021/ef900259h [Google Scholar]
  140. Tan J., Cui J., Deng T., Cui X., Ding G., Zhu Y., and Li Y. ChemCatChem, 2015, 7, (3), 508 LINK https://doi.org/10.1002/cctc.201402834 [Google Scholar]
  141. Fu J., Sheng D., and Lu X. Catalysts, 2016, 6, (1), 6 LINK https://doi.org/10.3390/catal6010006 [Google Scholar]
  142. Deng J., Wang Y., Pan T., Xu Q., Guo Q.-X., and Fu Y. ChemSusChem, 2013, 6, (7), 1163 LINK https://doi.org/10.1002/cssc.201300245 [Google Scholar]
  143. Mehdi H., Fábos V., Tuba R., Bodor A., Mika L. T., and Horváth I. T. Top. Catal., 2008, 48, (1–4), 49 LINK https://doi.org/10.1007/s11244-008-9047-6 [Google Scholar]
  144. Geilen F. M. A., Engendahl B., Harwardt A., Marquardt W., Klankermayer J., and Leitner W. Angew. Chem. Int. Ed., 2010, 49, (32), 5510 LINK https://doi.org/10.1002/anie.201002060 [Google Scholar]
  145. Delhomme C., Schaper L.-A., Zhang-Preße M., Raudaschl-Sieber G., Weuster-Botz D., and Kühn F. E. J. Organomet. Chem., 2013, 724, 297 LINK https://doi.org/10.1016/j.jorganchem.2012.10.030 [Google Scholar]
  146. Tukacs J. M., Király D., Strádi A., Novodarszki G., Eke Z., Dibó G., Kégl T., and Mika L. T. Green Chem., 2012, 14, (7), 2057 LINK https://doi.org/10.1039/C2GC35503E [Google Scholar]
  147. Deng L., Li J., Lai D.-M., Fu Y., and Guo Q.-X. Angew. Chem. Int. Ed., 2009, 48, (35), 6529 LINK https://doi.org/10.1002/anie.200902281 [Google Scholar]
  148. Wu W.-P., Xu Y.-J., Chang S.-W., Deng J., and Fu Y. 2016, ChemCatChem, 8, (21), 3375 LINK https://doi.org/10.1002/cctc.201601009 [Google Scholar]
  149. Li W., Xie J.-H., Lin H., and Zhou Q.-L. Green Chem., 2012, 14, (9), 2388 LINK https://doi.org/10.1039/C2GC35650C [Google Scholar]
  150. Tay B. Y., Wang C., Phua P. H., Stubbs L. P., and Huynh H. V. Dalton Trans., 2016, 45, (8), 3558 LINK https://doi.org/10.1039/C5DT03366G [Google Scholar]
  151. Amenuvor G., Makhubela B. C. E., and Darkwa J. ACS Sustainable Chem. Eng., 2016, 4, (11), 6010 LINK https://doi.org/10.1021/acssuschemeng.6b01281 [Google Scholar]
  152. Geboers J., Van de Vyver S., Carpentier K., de Blochouse K., Jacobs P., and Sels B. Chem. Commun., 2010, 46, (20), 3577 LINK https://doi.org/10.1039/C001096K [Google Scholar]
  153. Palkovits R., Tajvidi K., Ruppert A. M., and Procelewska J. Chem. Commun., 2011, 47, (1), 576 LINK https://doi.org/10.1039/C0CC02263B [Google Scholar]
  154. Luo C., Wang S., and Liu H. Angew. Chem. Int. Ed., 2007, 46, (40), 7636 LINK https://doi.org/10.1002/anie.200702661 [Google Scholar]
  155. Komanoya T., Kobayashi H., Hara K., Chun W.-J., and Fukuoka A. ChemCatChem, 2014, 6, (1), 230 LINK https://doi.org/10.1002/cctc.201300731 [Google Scholar]
  156. Wang D., Niu W., Tan M., Wu M., Zheng X., Li Y., and Tsubaki N. ChemSusChem., 2014, 7, (5), 1398 LINK https://doi.org/10.1002/cssc.201301123 [Google Scholar]
  157. Crabtree S. P., and Tyers D. V. McDonnell Boehnen Hulbert and Berghoff LLP, ‘Hydrogenolysis of Sugar Feedstocks’, US Patent Appl. 2007/0,123,739 [Google Scholar]
  158. Andrews M. A., and Klaeren S. A. J. Am. Chem. Soc., 1989, 111, (11), 4131 LINK https://doi.org/10.1021/ja00193a073 [Google Scholar]
  159. Heinen A. W., Papadogianakis G., Sheldon R. A., Peters J. A., and van Bekkum H. J. Mol. Catal. A: Chem., 1999, 142, (1), 17 LINK https://doi.org/10.1016/S1381-1169(98)00288-X [Google Scholar]
  160. Kruse W. M. ICI America Inc, ‘Homogeneous Hydrogenation of Saccharides using Ruthenium Triphenyl Phosphine Complex’, US Patent Appl. 1976/3,935,284 [Google Scholar]
  161. Weng G., Tan X., Lv H., Zhao M., Wu M., Zhuo J., and Zhang X. Ind. Eng. Chem. Res., 2016, 55, (18), 5263 LINK https://doi.org/10.1021/acs.iecr.6b00518 [Google Scholar]
  162. Dethlefsen J. R., and Fristrup P. ChemSusChem, 2015, 8, (5), 767 LINK https://doi.org/10.1002/cssc.201402987 [Google Scholar]
  163. Ji N., Zhang T., Zheng M., Wang A., Wang H., Wang X., and Chen J. G. Angew. Chem. Int. Ed., 2008, 47, (44), 8510 LINK https://doi.org/10.1002/anie.200803233 [Google Scholar]
  164. Wang A., and Zhang T. Acc. Chem. Res., 2013, 46, (7), 1377 LINK https://doi.org/10.1021/ar3002156 [Google Scholar]
  165. Delidovich I., Hausoul P. J. C., Deng L., Pfuützenreuter R., Rose M., and Palkovits R. Chem. Rev., 2016, 116, (3), 1540 LINK https://doi.org/10.1021/acs.chemrev.5b00354 [Google Scholar]
  166. Wang K., Hawley M. C., and Furney T. D. Ind. Eng. Chem. Res., 1995, 34, (11), 3766 LINK https://doi.org/10.1021/ie00038a012 [Google Scholar]
  167. Ge L., Wu X., Chen J., and Wu J. J. Biomater. Nanobiotech., 2011, 2, (3), 335 LINK https://doi.org/10.4236/jbnb.2011.23041 [Google Scholar]
  168. Tai Z., Zhang J., Wang A., Zheng M., and Zhang T. Chem. Commun., 2012, 48, (56), 7052 LINK https://doi.org/10.1039/C2CC32305B [Google Scholar]
  169. Liu Y., Luo C., and Liu H. Angew. Chem. Int. Ed., 2012, 51, (13), 3249 LINK https://doi.org/10.1002/anie.201200351 [Google Scholar]
  170. Zhou J. H., Zhang M. G., Zhao L., Li P., Zhou X. G., and Yuan W. K. Catal. Today, 2009, 147, S225 LINK https://doi.org/10.1016/j.cattod.2009.07.057 [Google Scholar]
  171. Sun J., and Liu H. Green Chem., 2011, 13, (1), 135 LINK https://doi.org/10.1039/C0GC00571A [Google Scholar]
  172. Werpy T. A., Frye J. G., Zacher A. H., and Miller D. J. Battelle Memorial Institute, ‘Hydrogenolysis of 6-Carbon Sugars and other Organic Compounds’, US Patent Appl. 2005/6,841,085 [Google Scholar]
  173. Tanikella M. S. S. R. Du Pont, ‘Hydrogenolysis of Polyols to Ethylene Glycol in Nonaqueous Solvents’, US Patent Appl. 1983/4,404,411 [Google Scholar]
  174. Cortright R. D., Davda R. R., and Dumesic J. A. Nature, 2002, 418, (6901), 964 LINK https://doi.org/10.1038/nature01009 [Google Scholar]
  175. Huber G. W., Cortright R. D., and Dumesic J. A. Angew. Chem. Int. Ed., 2004, 43, (12), 1549 LINK https://doi.org/10.1002/anie.200353050 [Google Scholar]
  176. Li Y., Sponholz P., Nielsen M., Junge H., and Beller M. ChemSusChem, 2015, 8, (5), 804 LINK https://doi.org/10.1002/cssc.201403099 [Google Scholar]
  177. Huber G. W., Chheda J. N., Barrett C. J., and Dumesic J. A. Science, 2005, 308, (5727), 1446 LINK https://doi.org/10.1126/science.1111166 [Google Scholar]
  178. Nakagawa Y., Liu S., Tamura M., and Tomishige K. ChemSusChem, 2015, 8, (7), 1114 LINK https://doi.org/10.1002/cssc.201403330 [Google Scholar]
  179. Song J., Fan H., Ma J., and Han B. Green Chem., 2013, 15, (10), 2619 LINK https://doi.org/10.1039/C3GC41141A [Google Scholar]
  180. Dusselier M., Wouwe P. V., Dewaele A., Makshina E., and Sels B. F. Energy Environ. Sci., 2013, 6, (5), 1415 LINK https://doi.org/10.1039/C3EE00069A [Google Scholar]
  181. Szabolcs A., Molnár M., Dibó G., and Mika L. T. Green Chem., 2013, 15, (2), 439 LINK https://doi.org/10.1039/C2GC36682G [Google Scholar]
  182. Girisuta B., Janssen L. P. B. M., and Heeres H. J. Ind. Eng. Chem. Res., 2007, 46, (6), 1696 LINK https://doi.org/10.1021/ie061186z [Google Scholar]
  183. Jin F., and Enomoto H. Energy Environ. Sci., 2011, 4, (2), 382 LINK https://doi.org/10.1039/C004268D [Google Scholar]
  184. Calvo L., and Vallejo D. Ind. Eng. Chem. Res., 2002, 41, (25), 6503 LINK https://doi.org/10.1021/ie020441m [Google Scholar]
  185. Tang Z., Deng W., Wang Y., Zhu E., Wan X., Zhang Q., and Wang Y. ChemSusChem, 2014, 7, (6), 1557 LINK https://doi.org/10.1002/cssc.201400150 [Google Scholar]
  186. Wang Y., Deng W., Wang B., Zhang Q., Wan X., Tang Z., Wang Y., Zhu C., Cao Z., Wang G., and Wan H. Nat. Commun., 2013, 4, 2141 LINK https://doi.org/10.1038/ncomms3141 [Google Scholar]
  187. Huo Z., Fang Y., Ren D., Zhang S., Yao G., Zeng X., and Jin F. ACS Sustainable Chem. Eng., 2014, 2, (12), 2765 LINK https://doi.org/10.1021/sc500507b [Google Scholar]
  188. Mäki-Arvela P., Simakova I. L., Salmi T., and Murzin D. Y. Chem. Rev., 2014, 114, (3), 1909 LINK https://doi.org/10.1021/cr400203v [Google Scholar]
  189. Jin F., Zhou Z., Moriya T., Kishida H., Higashijima H., and Enomoto H. Environ. Sci. Technol., 2005, 39, (6), 1893 LINK https://doi.org/10.1021/es048867a [Google Scholar]
  190. Han Y, Zhang J., and Liu X King Abdullah University of Science and Technology,US Patent Appl., 2013/0,281,733 [Google Scholar]
  191. Hietala J., Vuori A., Johnsson P., Pollari I., Reutemann W., and Kieczka H. ‘Formic Acid’, in “Ullmann’s Encyclopedia of Industrial Chemistry: 1–22”, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2016 LINK https://doi.org/10.1002/14356007.a12_013.pub3 [Google Scholar]
  192. Barnard J. H., Wang C., Berry N. G., and Xiao J. Chem. Sci., 2013, 4, (3), 1234 LINK https://doi.org/10.1039/C2SC21923A [Google Scholar]
  193. Jin F., Yun J., Li G., Kishita A., Tohji K., and Enomoto H. Green Chem., 2008, 10, (6), 612 LINK https://doi.org/10.1039/B802076K [Google Scholar]
  194. Wölfel R., Taccardi N., Bösmann A., and Wasserscheid P. Green Chem., 2011, 13, (10), 2759 LINK https://doi.org/10.1039/C1GC15434F [Google Scholar]
  195. Pan T., Deng J., Xu Q., Zuo Y., Guo Q.-X., and Fu Y. ChemSusChem, 2013, 6, (1), 47 LINK https://doi.org/10.1002/cssc.201200652 [Google Scholar]
  196. Gandini A., Coelho D., Gomes M., Reis B., and Silvestre A. J. Mater. Chem., 2009, 19, (45), 8656 LINK https://doi.org/10.1039/B909377J [Google Scholar]
  197. Gallo J. M. R., Alonso D. M., Mellmer M. A., and Dumesic J. A. Green Chem., 2013, 15, (1), 85 LINK https://doi.org/10.1039/C2GC36536G [Google Scholar]
  198. Teong S. P., Yi G., and Zhang Y. Green Chem., 2014, 16, (4), 2015 LINK https://doi.org/10.1039/C3GC42018C [Google Scholar]
  199. Cai J., Ma H., Zhang J., Song Q., Du Z., Huang Y., and Xu J. Chem. Eur. J., 2013, 19, (42), 14215 LINK https://doi.org/10.1002/chem.201301735 [Google Scholar]
  200. Jain A., Jonnalagadda S. C., Ramanujachary K. V., and Mugweru A. Catal. Commun., 2015, 58, 179 LINK https://doi.org/10.1016/j.catcom.2014.09.017 [Google Scholar]
  201. Partenheimer W., and Grushin V. V. Adv. Synth. Catal., 2001, 343, (1), 102 LINK https://doi.org/10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-Q [Google Scholar]
  202. Yi G., Teong S. P., and Zhang Y. ChemSusChem, 2015, 8, (7), 1151 LINK https://doi.org/10.1002/cssc.201500118 [Google Scholar]
  203. Yang Z., Qi W., Su R., and He Z. Energy Fuels, 2017, 31, (1), 533 LINK https://doi.org/10.1021/acs.energyfuels.6b02012 [Google Scholar]
  204. Rass H. A., Essayem N., and Besson M. ChemSusChem, 2015, 8, (7), 1206 LINK https://doi.org/10.1002/cssc.201403390 [Google Scholar]
  205. Koopman F., Wierckx N., de Winde J. H., and Ruijssenaars H. J. Bioresource Technol., 2010, 101, (16), 6291 LINK https://doi.org/10.1016/j.biortech.2010.03.050 [Google Scholar]
  206. ‘YXY Technology’, Avantium, Amsterdam, The Netherlands:https://www.avantium.com/yxy/yxy-technology/ (Accessed on 18 August 2017) [Google Scholar]
  207. Ramachandran S., Fontanille P., Pandey A., and Larroche C. Food Technol. Biotechnol., 2006, 44, (2), 185 LINK http://www.ftb.com.hr/images/pdfarticles/2006/April-June/44-185.pdf [Google Scholar]
  208. Climent M. J., Corma A., and Iborra S. Green Chem., 2011, 13, (3), 52 LINK https://doi.org/10.1039/C0GC00639D [Google Scholar]
  209. Biella S., Prati L., and Rossi M. J. Catal., 2002, 206, (2), 242 LINK https://doi.org/10.1006/jcat.2001.3497 [Google Scholar]
  210. Önal Y., Schimpf S., and Claus P. J. Catal., 2004, 223, (1), 122 LINK https://doi.org/10.1016/j.jcat.2004.01.010 [Google Scholar]
  211. Baatz C., and Prüße U. J. Catal., 2007, 249, (1), 34 LINK https://doi.org/10.1016/j.jcat.2007.03.026 [Google Scholar]
  212. Mirescu A., Brendt H., Martin A., and Prüße U. Appl. Catal. A: Chem., 2007, 317, (2), 204 LINK https://doi.org/10.1016/j.apcata.2006.10.016 [Google Scholar]
  213. Comotti M., Pina C. D., and Rossi M. J. Mol. Catal. A: Chem., 2006, 251, (1–2), 89 LINK https://doi.org/10.1016/j.molcata.2006.02.014 [Google Scholar]
  214. An D., Ye A., Deng W., Zhang Q., and Wang Y. Chem Eur. J., 2012, 18, (10), 2938 LINK https://doi.org/10.1002/chem.201103262 [Google Scholar]
  215. Onda A., Ochi T., and Yanagisawa K. Catal. Commun., 2011, 12, (6), 421 LINK https://doi.org/10.1016/j.catcom.2010.10.023 [Google Scholar]
  216. Murphy V. J., Shoemaker J., Zhu G., Archer R., Salema G. F., and Dias E. L. Rennovia Inc, US Patent Appl. 2011/0,306,790 [Google Scholar]
  217. Boussie T. R., Dias E. L., Fresco Z. M., Murphy V. J., Shoemaker J., Archer R., and Jiang H. Rennovia Inc, US Patent Appl. 2010/0,317,823 [Google Scholar]
  218. Diamond G. M., Murphy V., Boussie T. R., ‘Application of High Throughput Experimentation to the Production of Commodity Chemicals from Renewable Feedstocks’, in “Modern Applications of High Throughput R&D in Heterogeneous Catalysis”, eds. and Hagemeyer A. A. F Volpe, Bentham Science Publishers, United Arab Emirates, 2014, pp. 288309 LINK https://doi.org/10.2174/97816080587231140101 [Google Scholar]
  219. Dodson J. R., Hunt A. J., Parker H. L., Yang Y., and Clark J. H. Chem. Eng. Proc.: Proc. Intens., 2012, 51, 69 LINK https://doi.org/10.1016/j.cep.2011.09.008 [Google Scholar]
  220. Wilson-Corral V., Anderson C. W. N., and Rodriguez-Lopez M. J. Environ. Manage., 2012, 111, 249 LINK https://doi.org/10.1016/j.jenvman.2012.07.037 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651317X696261
Loading
/content/journals/10.1595/205651317X696261
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error