Skip to content
1887
Volume 63, Issue 2
  • ISSN: 2056-5135

Abstract

Electrochemistry studies on the derivatives of graphene have been in the forefront of chemical research in recent years. The large specific surface area, high electrical conductivity, fast electron transfer rate and excellent biocompatibility to biomolecules constitute a few of the underlying reasons for the extensive application of graphene derivatives in modern electrochemistry and related technologies. Much interest in graphene derivatives has been driven by the ease of intentional functionalisation of the carbon backbone of graphene with dopants, such as nitrogen. Doping enhances the electrical conductivity and biocompatibility of nitrogen-doped graphene (NGr) nanomaterials and aids in their potential applications in electrochemical sensing and spectroelectrochemical devices. Despite the application of NGr in electrochemical sensing devices, the major challenge for reproducible industrial application still lies in the use of surfactants and binders and the limited knowledge on the correlation between the N-configurations and the electrocatalytic performance of these NGr-based electrodes. Therefore, the purpose of this short review article is to highlight some recent progress on the application of NGr derivatives for electrochemical detection of biomarkers such as uric acid and dopamine. The paper will also illustrate design parameters for new surfactant-free two-dimensional (2D) N-doped graphene based electrochemical sensors with variable N-functionalities for the detection of dopamine and uric acid.

Loading

Article metrics loading...

/content/journals/10.1595/205651319X15472048744138
2019-01-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/63/2/Matsoso_16a_Imp.html?itemId=/content/journals/10.1595/205651319X15472048744138&mimeType=html&fmt=ahah

References

  1. Wang H.-W., Wei Y.-H., and Guo H.-W. Anticancer Agents Med. Chem., 2009, 9, (9), 1012 LINK https://doi.org/10.2174/187152009789377718 [Google Scholar]
  2. Li J., and Lin X. Sensors Actuators B: Chem., 2007, 124, (2), 486 LINK https://doi.org/10.1016/j.snb.2007.01.021 [Google Scholar]
  3. Bard A. J., and Faulker L. R. “Electrochemical Methods: Fundamentals and Applications”, 2nd Edn.,John Wiley and Sons Inc, New York, USA, 2001 [Google Scholar]
  4. Wang Z., Liu S., Wu P., and Cai C. Anal. Chem., 2009, 81, (4), 1638 LINK https://doi.org/10.1021/ac802421h [Google Scholar]
  5. Anjo D. M., Kahr M., Khodabakhsh M. M., Nowinski S., and Wanger M. Anal. Chem., 1989, 61, (23), 2603 LINK https://doi.org/10.1021/ac00198a004 [Google Scholar]
  6. Xu H., Xiao J., Yan L., Zhu L., and Liu B. J. Electroanal. Chem., 2016, 779, 92 LINK https://doi.org/10.1016/j.jelechem.2016.04.032 [Google Scholar]
  7. Sheng Z.-H., Zheng X.-Q., Xu J.-Y., Bao W.-J., Wang F.-B., and Xia X.-H. Biosens. Bioelectron., 2012, 34, (1), 125 LINK https://doi.org/10.1016/j.bios.2012.01.030 [Google Scholar]
  8. Aneesh P. K., Nambiar S. R., Rao T. P., and Ajayaghosh A. Anal. Methods, 2014, 6, (14), 5322 LINK https://doi.org/10.1039/c4ay00043a [Google Scholar]
  9. Wang L., Huang P., Bai J., Wang H., Wu X., and Zhao Y. Int. J. Electrochem. Sci., 2006, 1, (6), 334 LINK http://www.electrochemsci.org/papers/1060334.pdf [Google Scholar]
  10. Liu G., Ma W., Luo Y., Sun D., and Shao S. J. Anal. Methods Chem., 2014, 984314 LINK https://doi.org/10.1155/2014/984314 [Google Scholar]
  11. Kim Y.-R., Bong S., Kang Y.-J., Yang Y., Mahajan R. K., Kim J. S., and Kim H. Biosens. Bioelectron., 2010, 25, (10), 2366 LINK https://doi.org/10.1016/j.bios.2010.02.031 [Google Scholar]
  12. Qi S., Zhao B., Tang H., and Jiang X. Electrochim. Acta, 2015, 161, 395 LINK https://doi.org/10.1016/j.electacta.2015.02.116 [Google Scholar]
  13. Jackowska K., and Krysinski P. Anal. Bioanal. Chem., 2013, 405, (11), 3753 LINK https://doi.org/10.1007/s00216-012-6578-2 [Google Scholar]
  14. Niu L. M., Lian K. Q., Shi H. M., Wu Y. B., Kang W. J., and Bi S. Y. Sensors Actuators B: Chem., 2013, 178, 10 LINK https://doi.org/10.1016/j.snb.2012.12.015 [Google Scholar]
  15. Sajid M., Nazal M. K., Mansha M., Alsharaa A., Jillani S. M. S., and Basheer C. TrAC Trends Anal. Chem., 2016, 76, 15 LINK https://doi.org/10.1016/j.trac.2015.09.006 [Google Scholar]
  16. Gottås A., Ripel Å., Boix F., Vindenes V., Mørland J., and Øiestad E. L. J. Pharmacol. Toxicol. Methods, 2015, 74, 75 LINK https://doi.org/10.1016/j.vascn.2015.06.002 [Google Scholar]
  17. Floresco S. B., West A. R., Ash B., Moore H., and Grace A. A. Nat. Neurosci., 2003, 6, (9), 968 LINK https://doi.org/10.1038/nn1103 [Google Scholar]
  18. Sano I., Gamo T., Kakimoto Y., Taniguchi K., Takesada M., and Nishinuma K. Biochim. Biophys. Acta, 1959, 32, 586 LINK https://doi.org/10.1016/0006-3002(59)90652-3 [Google Scholar]
  19. Wightman R. M., May L. J., and Michael A. C. Anal. Chem., 1988, 60, (13), 769A LINK https://doi.org/10.1021/ac00164a718 [Google Scholar]
  20. Kapur S., and Mamo D. Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2003, 27, (7), 1081 LINK https://doi.org/10.1016/j.pnpbp.2003.09.004 [Google Scholar]
  21. “Handbook of the Neuroscience of Aging”, eds. Mobbs C. V., and Hof P. R. Elsevier Inc, London, UK, 2009 [Google Scholar]
  22. Mazzali M., Hughes J., Kim Y.-G., Jefferson J. A., Kang D.-H., Gordon K. L., Lan H. Y., Kivlighn S., and Johnson R. J. Hypertension, 2001, 38, (5), 1101 LINK https://doi.org/10.1161/hy1101.092839 [Google Scholar]
  23. Gowrishankar R., Hahn M. K., and Blakely R. D. Neurochem. Int., 2014, 73, 42 LINK https://doi.org/10.1016/j.neuint.2013.10.016 [Google Scholar]
  24. Montagu K. A. Nature, 1957, 180, (4579), 244 LINK https://doi.org/10.1038/180244a0 [Google Scholar]
  25. Eswara Dutt V. V. S., and Mottola H. A. Anal. Chem., 1974, 46, (12), 1777 LINK https://doi.org/10.1021/ac60348a041 [Google Scholar]
  26. Liu S., Xing X., Yu J., Lian W., Li J., Cui M., and Huang J. Biosens. Bioelectron., 2012, 36, (1), 186 LINK https://doi.org/10.1016/j.bios.2012.04.011 [Google Scholar]
  27. Chen X., Wu G., Cai Z., Oyama M., and Chen X. Microchim. Acta, 2014, 181, (7–8), 689 LINK https://doi.org/10.1007/s00604-013-1098-0 [Google Scholar]
  28. Yu J., Wang S., Ge L., and Ge S. Biosens. Bioelectron., 2011, 26, (7), 3284 LINK https://doi.org/10.1016/j.bios.2010.12.044 [Google Scholar]
  29. Sun H., Chao J., Zuo X., Su S., Liu X., Yuwen L., Fan C., and Wang L. RSC Adv., 2014, 4, (52), 27625 LINK https://doi.org/10.1039/c4ra04046e [Google Scholar]
  30. Wang L., Lu X., Wen C., Xie Y., Miao L., Chen S., Li H., Li P., and Song Y. J. Mater. Chem. A, 2015, 3, (2), 608 LINK https://doi.org/10.1039/c4ta04724a [Google Scholar]
  31. Shakkthivel P., and Chen S.-M. Biosens. Bioelectron., 2007, 22, (8), 1680 LINK https://doi.org/10.1016/j.bios.2006.07.026 [Google Scholar]
  32. Cinti S., Arduini F., Carbone M., Sansone L., Cacciotti I., Moscone D., and Palleschi G. Electroanal., 2015, 27, (9), 2230 LINK https://doi.org/10.1002/elan.201500168 [Google Scholar]
  33. Ambrosi A., Chua C. K., Bonanni A., and Pumera M. Chem. Rev., 2014, 114, (14), 7150 LINK https://doi.org/10.1021/cr500023c [Google Scholar]
  34. Ambrosi A., Chua C. K., Latiff N. M., Loo A. H., Wong C. H. A., Eng A. Y. S., Bonanni A., and Pumera M. Chem. Soc. Rev., 2016, 45, (9), 2458 LINK https://doi.org/10.1039/c6cs00136j [Google Scholar]
  35. Pumera M., Šmíd B., and Veltruská K. J. Nanosci. Nanotechnol., 2009, 9, (4), 2671 LINK https://doi.org/10.1166/jnn.2009.031 [Google Scholar]
  36. Abdelwahab A. A., and Shim Y.-B. Sensors Actuators B: Chem., 2015, 221, 659 LINK https://doi.org/10.1016/j.snb.2015.07.016 [Google Scholar]
  37. Komathi S., Gopalan A. I., and Lee K.-P. Analyst, 2010, 135, (2), 397 LINK https://doi.org/10.1039/b918335c [Google Scholar]
  38. Cheemalapati S., Palanisamy S., Mani V., and Chen S.-M. Talanta, 2013, 117, 297 LINK https://doi.org/10.1016/j.talanta.2013.08.041 [Google Scholar]
  39. Geim A. K., and Novoselov K. S. Nature Mater., 2007, 6, (3), 183 LINK https://doi.org/10.1038/nmat1849 [Google Scholar]
  40. Novoselov K. S., Geim A. K., Morosov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., and Firsov A. A. Science, 2004, 306, (5696), 666 LINK https://doi.org/10.1126/science.1102896 [Google Scholar]
  41. Matsoso B. J., Ranganathan K., Mutuma B. K., Lerotholi T., Jones G., and Coville N. J. RSC Adv., 2016, 6, (108), 106914 LINK https://doi.org/10.1039/c6ra24094a [Google Scholar]
  42. Han D., Han T., Shan C., Ivaska A., and Niu L. Electroanal., 2010, 22, (17–18), 2001 LINK https://doi.org/10.1002/elan.201000094 [Google Scholar]
  43. Dong X., Fu D., Fang W., Shi Y., Chen P., and Li L.-J. Small, 2009, 5, (12), 1422 LINK https://doi.org/10.1002/smll.200801711 [Google Scholar]
  44. Lv R., and Terrones M. Mater. Lett., 2012, 78, 209 LINK https://doi.org/10.1016/j.matlet.2012.04.033 [Google Scholar]
  45. Chang C.-K., Kataria S., Kuo C.-C., Ganguly A., Wang B.-Y., Hwang J.-Y., Huang K.-J., Yang W.-H., Wang S.-B., Chuang C.-H., Chen M., Huang C.-I., Pong W.-F., Song K.-J., Chang S.-J., Guo J.-H., Tai Y., Tsujimoto M., Isoda S., Chen C.-W., Chen L.-C., and Chen K.-H. ACS Nano, 2013, 7, (2), 1333 LINK https://doi.org/10.1021/nn3049158 [Google Scholar]
  46. Shinde P. P., and Kumar V. Phys. Rev. B, 2011, 84, (12), 125401 LINK https://doi.org/10.1103/physrevb.84.125401 [Google Scholar]
  47. Pumera M., Ambrosi A., Bonanni A., Chng E. L. K., and Poh H. L. TrAC Trends Anal. Chem., 2010, 29, (9), 954 LINK https://doi.org/10.1016/j.trac.2010.05.011 [Google Scholar]
  48. Brownson D. A. C., Kampouris D. K., and Banks C. E. Chem. Soc. Rev., 2012, 41, (21), 6944 LINK https://doi.org/10.1039/c2cs35105f [Google Scholar]
  49. Novoselov K. S., Geim A. K., Morozov S. V, Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V., and Firsov A. A. Nature, 2005, 438, (7065), 197 LINK https://doi.org/10.1038/nature04233 [Google Scholar]
  50. Zhang C., Zhang Z., Yang Q., and Chen W. Electroanal., 2018, 30, (11), 2504 LINK https://doi.org/10.1002/elan.201800522 [Google Scholar]
  51. Hummers W. S., and Offeman R. E. J. Am. Chem. Soc., 1958, 80, (6), 1339 LINK https://doi.org/10.1021/ja01539a017 [Google Scholar]
  52. Zaaba N. I., Foo K. L., Hashim U., Tan S. J., Liu W.-W., and Voon C. H. Procedia Eng., 2017, 184, 469 LINK https://doi.org/10.1016/j.proeng.2017.04.118 [Google Scholar]
  53. Stankovich S., Dikin D. A., Piner R. D., Kohlhaas K. A., Kleinhammes A., Jia Y., Wu Y., Nguyen S. T., and Ruoff R. S. Carbon, 2007, 45, (7), 1558 LINK https://doi.org/10.1016/j.carbon.2007.02.034 [Google Scholar]
  54. Becerril H. A., Mao J., Liu Z., Stoltenberg R. M., Bao Z., and Chen Y. ACS Nano, 2008, 2, (3), 463 LINK https://doi.org/10.1021/nn700375n [Google Scholar]
  55. Bak S., Kim D., and Lee H. Curr. Appl. Phys., 2016, 16, (9), 1192 LINK https://doi.org/10.1016/j.cap.2016.03.026 [Google Scholar]
  56. Ponomarenko L. A., Schedin F., Katsnelson M. I., Yang R., Hill E. W., Novoselov K. S., and Geim A. K. Science, 2008, 320, (5874), 356 LINK https://doi.org/10.1126/science.1154663 [Google Scholar]
  57. Wang L., Li W., Wu B., Li Z., Wang S., Liu Y., Pan D., and Wu M. Chem. Eng. J., 2016, 300, 75 LINK https://doi.org/10.1016/j.cej.2016.04.123 [Google Scholar]
  58. Hassan M., Haque E., Reddy K. R., Minett A. I., Chen J., and Gomes V. G. Nanoscale, 2014, 6, (20), 11988 LINK https://doi.org/10.1039/c4nr02365j [Google Scholar]
  59. Wang Y., Huang Y., Wang B., Fang T., Chen J., and Liang C. J. Electroanal. Chem., 2016, 782, 76 LINK https://doi.org/10.1016/j.jelechem.2016.09.050 [Google Scholar]
  60. Dong X., Wang X., Wang L., Song H., Zhang H., Huang W., and Chen P. ACS Appl. Mater. Interfaces, 2012, 4, (6), 3129 LINK https://doi.org/10.1021/am300459m [Google Scholar]
  61. Yang L., Liu D., Huang J., and You T. Sensors Actuators B: Chem., 2014, 193, 166 LINK https://doi.org/10.1016/j.snb.2013.11.104 [Google Scholar]
  62. Yu X., Sheng K., and Shi G. Analyst, 2014, 139, (18), 4525 LINK https://doi.org/10.1039/c4an00604f [Google Scholar]
  63. Kanyong P., Rawlinson S., and Davis J. Chemosens., 2016, 4, (4), 25 LINK https://doi.org/10.3390/chemosensors4040025 [Google Scholar]
  64. Wang H., Ren F., Wang C., Yang B., Bin D., Zhang K., and Du Y. RSC Adv., 2014, 4, (51), 26895 LINK https://doi.org/10.1039/c4ra03148b [Google Scholar]
  65. Matsoso B. J., Lerotholi T., Jones G., and Coville N. J. ‘CVD Growth of Pristine and N-Doped Graphene Films for Support of Platinum and Palladium Nanoparticles in Electrochemical Sensing of Dopamine and Uric Acid’, PhD Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2017, pp. 96–131 [Google Scholar]
  66. Manjunatha J. G., Kumara Swamy B. E., Mamatha G. P., Chandra U., Niranjana E., and Sherigara B. S. Int. J. Electrochem. Sci., 2009, 4, (2), 187 LINK http://www.electrochemsci.org/papers/vol4/4020187.pdf [Google Scholar]
  67. Oni J., and Nyokong T. Anal. Chim. Acta, 2001, 434, (1), 9 LINK https://doi.org/10.1016/s0003-2670(01)00822-4 [Google Scholar]
  68. Rusling J. F. Acc. Chem. Res., 1991, 24, (3), 75 LINK https://doi.org/10.1021/ar00003a003 [Google Scholar]
  69. Sun Y., Fei J., Wu K., and Hu S. Anal. Bioanal. Chem., 2003, 375, (4), 544 LINK https://doi.org/10.1007/s00216-002-1743-7 [Google Scholar]
  70. Manjunatha J. G., Deraman M., Basri N. H., Nor N. S. M., Talib I. A., and Ataollahi N. Comptes Rendus Chim., 2014, 17, (5), 465 LINK https://doi.org/10.1016/j.crci.2013.09.016 [Google Scholar]
  71. Colín-Orozco E., Ramírez-Silva M. T., Corona-Avendaño S., Romero-Romo M., and Palomar-Pardavé M. Electrochim. Acta, 2012, 85, 307 LINK https://doi.org/10.1016/j.electacta.2012.08.081 [Google Scholar]
  72. Aldana-González J., Palomar-Pardavé M., Corona-Avendaño S., Montes de Oca M. G., Ramírez-Silva M. T., and Romero-Romo M. J. Electroanal. Chem., 2013, 706, 69 LINK https://doi.org/10.1016/j.jelechem.2013.07.037 [Google Scholar]
  73. Aldana-González J., Olvera-García J., Montes de Oca M. G., Romero-Romo M., Ramírez-Silva M. T., and Palomar-Pardavé M. Electrochem. Commun., 2015, 56, 70 LINK https://doi.org/10.1016/j.elecom.2015.04.014 [Google Scholar]
  74. Jiang G., Jiang T., Zhou H., Yao J., and Kong X. RSC Adv., 2015, 5, (12), 9064 LINK https://doi.org/10.1039/c4ra16773b [Google Scholar]
  75. Niwa O., Xu G., and Iwasaki Y. Electrochem., 2006, 74, (2), 135 LINK https://doi.org/10.5796/electrochemistry.74.135 [Google Scholar]
  76. Ye F., Feng C., Jiang J., and Han S. Electrochim. Acta, 2015, 182, 935 LINK https://doi.org/10.1016/j.electacta.2015.10.001 [Google Scholar]
  77. Camardese G., Di Giuda D., Di Nicola M., Cocciolillo F., Giordano A., Janiri L., and Guglielmo R. J. Psychiatr. Res., 2014, 51, 7 LINK https://doi.org/10.1016/j.jpsychires.2013.12.006 [Google Scholar]
  78. Zhang Y., Lei W., Xu Y., Xia X., and Hao Q. Nanomater., 2016, 6, (10), 178 LINK https://doi.org/10.3390/nano6100178 [Google Scholar]
  79. Yang J., Strickler J. R., and Gunasekaran S. Nanoscale, 2012, 4, (15), 4594 LINK https://doi.org/10.1039/c2nr30618b [Google Scholar]
  80. Zhang Y., Ji Y., Wang Z., Liu S., and Zhang T. RSC Adv., 2015, 5, (129), 106307 LINK https://doi.org/10.1039/c5ra24727f [Google Scholar]
  81. Hua L., Wu X., and Wang R. Analyst, 2012, 137, (24), 5716 LINK https://doi.org/10.1039/c2an35612k [Google Scholar]
  82. Shan C., Yang H., Han D., Zhang Q., Ivaska A., and Niu L. Langmuir, 2009, 25, (20), 12030 LINK https://doi.org/10.1021/la903265p [Google Scholar]
  83. Yan J., Liu S., Zhang Z., He G., Zhou P., Liang H., Tian L., Zhou X., and Jiang H. Coll. Surf. B: Biointer., 2013, 111, 392 LINK https://doi.org/10.1016/j.colsurfb.2013.06.030 [Google Scholar]
  84. Liu M., Chen Q., Lai C., Zhang Y., Deng J., Li H., and Yao S. Biosens. Bioelectron., 2013, 48, 75 LINK https://doi.org/10.1016/j.bios.2013.03.070 [Google Scholar]
  85. He Q., Liu J., Liu X., Li G., Deng P., and Liang J. Sensors, 2018, 18, (1), 199 LINK https://doi.org/10.3390/s18010199 [Google Scholar]
  86. Shen Y., Sheng Q., and Zheng J. Anal. Methods, 2017, 9, (31), 4566 LINK http://doi.org/10.1039/C7AY00717E [Google Scholar]
  87. Wang Z., Tang J., Zhang F., Xia J., Sun N., Shi G., Xia Y., Xia L., and Qin L. Int. J. Electrochem. Sci., 2013, 8, (7), 9967 LINK http://www.electrochemsci.org/papers/vol8/80709967.pdf [Google Scholar]
  88. Li Y., Gu Y., Zheng B., Luo L., Li C., Yan X., Zhang T., Lu N., and Zhang Z. Talanta, 2017, 162, 80 LINK https://doi.org/10.1016/j.talanta.2016.10.016 [Google Scholar]
  89. Liu Y., She P., Gong J., Wu W., Xu S., Li J., Zhao K., and Deng A. Sensors Actuators B: Chem., 2015, 221, 1542 LINK https://doi.org/10.1016/j.snb.2015.07.086 [Google Scholar]
  90. Zhao L., Li H., Gao S., Li M., Xu S., Li C., Guo W., Qu C., and Yang B. Electrochim. Acta, 2015, 168, 191 LINK https://doi.org/10.1016/j.electacta.2015.03.215 [Google Scholar]
  91. Chen C., Zhang C., Gao X., Zhuang Z., Du C., and Chen W. Anal. Chem., 2018, 90, (3), 1983 LINK https://doi.org/10.1021/acs.analchem.7b04070 [Google Scholar]
  92. Zhang C., Li L., Ju J., and Chen W. Electrochim. Acta, 2016, 210, 181 LINK https://doi.org/10.1016/j.electacta.2016.05.151 [Google Scholar]
  93. Stoller M. D., Park S., Zhu Y., An J., and Ruoff R. S. Nano Lett., 2008, 8, (10), 3498 LINK https://doi.org/10.1021/nl802558y [Google Scholar]
  94. Lai L., Potts J. R., Zhan D., Wang L., Poh C. K., Tang C., Gong H., Shen Z., Lin J., and Ruoff R. S. Energy Environ. Sci., 2012, 5, (7), 7936 LINK https://doi.org/10.1039/c2ee21802j [Google Scholar]
  95. Matsoso B. J., Mutuma B. K., Billing C., Ranganathan K., Lerotholi T., Jones G., and Coville N. J. Electrochim. Acta, 2018, 286, 29 LINK https://doi.org/10.1016/j.electacta.2018.08.017 [Google Scholar]
  96. Matsoso B. J., Mutuma B. K., Billing C., Ranganathan K., Lerotholi T., Jones G., and Coville N. J. J. Electroanal. Chem., 2019, 833, 160 LINK https://doi.org/10.1016/j.jelechem.2018.11.040 [Google Scholar]
  97. Nsabimana A., Lai J., Li S., Hui P., Liu Z., and Xu G. Analyst, 2017, 142, (3), 478 LINK https://doi.org/10.1039/C6AN02584F [Google Scholar]
  98. Park D.-J., Choi J.-H., Lee W.-J., Um S. H., and Oh B.-K. J. Nanosci. Nanotechnol., 2017, 17, (11), 8012 LINK https://doi.org/10.1166/jnn.2017.15073 [Google Scholar]
  99. Li Y., Yao M., Li T.-T., Song Y.-Y., Zhang Y.-J., and Liu S.-Q. Anal. Methods, 2013, 5, (15), 3635 LINK https://doi.org/10.1039/c3ay40565f [Google Scholar]
  100. Joshi A., Schuhmann W., and Nagaiah T. C. Sensors Actuators B: Chem., 2016, 230, 544 LINK https://doi.org/10.1016/j.snb.2016.02.050 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651319X15472048744138
Loading
/content/journals/10.1595/205651319X15472048744138
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error