Skip to content
1887
Volume 64, Issue 2
  • ISSN: 2056-5135

Abstract

The work presented here introduces the topic of plasma catalysis through selected work in scientific literature and commercial applications, as well as identifying some of the key challenges faced when attempting to utilise non-thermal atmospheric plasma catalysis across multidisciplinary boundaries including those of physics, chemistry and electrical engineering. Plasma can be generated by different methods at many energy levels and can initiate chemical reactions; the main challenges are to selectively initiate desirable reactions either within a process stream or at the surface of a material. The material, which may have intrinsic catalytic properties, the nature of the process gas and the geometry of the reactor will influence the products formed. Previous work has shown that the mechanism for plasma-initiated reactions can be different to that occurring from more traditional thermally stimulated reactions, which opens up possibilities of using different catalytic materials to optimise the reaction rate and product speciation. In addition, the influence of a plasma at the surface of a material and the effects that can be introduced will be discussed.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15759961130711
2020-01-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/2/Hinde_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15759961130711&mimeType=html&fmt=ahah

References

  1. Uytdenhouwen Y., Bal K. M., Michielsen I., Neyts E. C., Meynen V., Cool P., and Bogaerts A. Chem. Eng. J., 2019, 372, 1253 LINK https://doi.org/10.1016/j.cej.2019.05.008 [Google Scholar]
  2. Mehta P., Barboun P., Herrera F. A., Kim J., Rumbach P., Go D. B., Hicks J. C., and Schneider W. F. Nature Catal., 2018, 1, (4), 269 LINK https://doi.org/10.1038/s41929-018-0045-1 [Google Scholar]
  3. Fridman A. “Plasma Chemistry”, Cambridge University Press, New York, USA, 2008, 978 pp LINK https://doi.org/10.1017/CBO9780511546075 [Google Scholar]
  4. Conrads H., and Schmidt M. Plasma Sources Sci. Technol., 2000, 9, (4), 441 LINK https://doi.org/10.1088/0963-0252/9/4/301 [Google Scholar]
  5. Ashpis D., Laun M., and Griebeler E. ‘Progress Toward Accurate Measurements of Power Consumption of DBD Plasma Actuators’, 50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum Aerospace Exposition, Nashville, Tennessee, USA, 9th–12th January, 2012, American Institute of Aeronautics and Astronautics, Reston, USA LINK https://doi.org/10.2514/6.2012-823 [Google Scholar]
  6. Bogaerts A., Zhang Q.-Z., Zhang Y.-R., Van Laer K., and Wang W. Catal. Today, 2019, 337, 3 LINK https://doi.org/10.1016/j.cattod.2019.04.077 [Google Scholar]
  7. Hessel V., Anastasopoulou A., Wang Q., Kolb G., and Lang J. Catal. Today, 2013, 211, 9 LINK https://doi.org/10.1016/j.cattod.2013.04.005 [Google Scholar]
  8. van Rooij G. J., Akse H. N., Bongers W. A., and van de Sanden M. C. M. Plasma Phys. Control. Fusion, 2018, 60, (1), 014019 LINK https://doi.org/10.1088/1361-6587/aa8f7d [Google Scholar]
  9. Davidson P. A. “An Introduction to Magnetohydrodynamics”, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, UK, 2001, 431 pp LINK https://doi.org/10.1017/cbo9780511626333 [Google Scholar]
  10. Gallo C. F. IEEE Trans. Ind. Appl., 1975, IA–11, (6), 739 LINK https://doi.org/10.1109/tia.1975.349370 [Google Scholar]
  11. Knoll G. F. “Radiation Detection and Measurement”, 3rd Edn., John Wiley and Sons Inc, New York, USA, 2000, 802 pp [Google Scholar]
  12. Tu X., Whitehead J. C., and Nozaki T. “Plasma Catalysis: Fundamentals and Applications”, eds. Springer Series on Atomic, Optical, and Plasma Physics, Vol. 106, Springer Nature Switzerland AG, Cham, Switzerland, 2019, 348 pp LINK https://doi.org/10.1007/978-3-030-05189-1 [Google Scholar]
  13. Puliyalil H., Lašič Jurković D., Dasireddy V. D. B. C., and Likozar B. RSC Adv., 2018, 8, (48), 27481 LINK https://doi.org/10.1039/c8ra03146k [Google Scholar]
  14. ‘Adaptable Reactors for Resource- and Energy-Efficient Methane Valorisation’, Spire 2030, ADREM Project: https://www.spire2030.eu/adrem (Accessed on 3rd February 2020) [Google Scholar]
  15. Kogelschatz U. Plasma Chem.Plasma Process., 2003, 23, (1), 1 LINK https://doi.org/10.1023/A:1022470901385 [Google Scholar]
  16. Kogelschatz U., Eliasson B., and Hirth M. Ozone: Sci. Eng., 1988, 10, (4), 367 LINK https://doi.org/10.1080/01919518808552391 [Google Scholar]
  17. Anderson R. P., Fincke J. R., and Taylor C. E. Fuel, 2002, 81, (7), 909 LINK https://doi.org/10.1016/s0016-2361(01)00188-0 [Google Scholar]
  18. Li X.-S., Zhu A.-M., Wang K.-J., Xu Y., and Song Z.- M. Catal. Today, 2004, 98, (4), 617 LINK https://doi.org/10.1016/j.cattod.2004.09.048 [Google Scholar]
  19. Kang H., Lee D. H., Kim K., Jo S., Pyun S., Song Y., and Yu S. Fuel Process. Technol., 2016, 148, 209 LINK https://doi.org/10.1016/j.fuproc.2016.02.028 [Google Scholar]
  20. Parvulescu V. I., Magureanu M., and Lukes P. “Plasma Chemistry and Catalysis in Gases and Liquids”, eds. Wiley-VCH Verlag GmbH and Co KGaA, Weinheim, Germany, 2012, 401 pp LINK https://doi.org/10.1002/9783527649525 [Google Scholar]
  21. Whitehead J. C. J. Phys. D: Appl. Phys., 2016, 49, (24), 243001 LINK https://doi.org/10.1088/0022-3727/49/24/243001 [Google Scholar]
  22. Lašič Jurković D., Puliyalil H., Pohar A., and Likozar B. Int. J. Energy Res., 2019, 43, (14), 8085 LINK https://doi.org/10.1002/er.4806 [Google Scholar]
  23. Neyts E. C., Ostrikov K., Sunkara M. K., and Bogaerts A. Chem. Rev., 2015, 115, (24), 13408 LINK https://doi.org/10.1021/acs.chemrev.5b00362 [Google Scholar]
  24. Gibson E. K., Stere C. E., Curran-McAteer B., Jones W., Cibin G., Gianolio D., Goguet A., Wells P. P., Catlow C. R. A., Collier P., Hinde P., and Hardacre C. Angew. Chem. Int. Ed., 2017, 56, (32), 9351 LINK https://doi.org/10.1002/anie.201703550 [Google Scholar]
  25. Zhou A., Chen D., Ma C., Yu F., and Dai B. Catalysts, 2018, 8, (7), 256 LINK https://doi.org/10.3390/catal8070256 [Google Scholar]
  26. Shah J. R., Harrison J. M., and Carreon M. L. Catalysts, 2018, 8, (10), 437 LINK https://doi.org/10.3390/catal8100437 [Google Scholar]
  27. Michielsen I., Uytdenhouwen Y., Bogaerts A., and Meynen V. Catalysts, 2019, 9, (1), 51 LINK https://doi.org/10.3390/catal9010051 [Google Scholar]
  28. Mizuno A. Int. J. Plasma Environ. Sci. Technol., 2009, 3, (1), 1 LINK https://doi.org/10.34343/ijpest.2009.03.01.001 [Google Scholar]
  29. Louste C., Artana G., Moreau E., and Touchard G. J. Electrostat., 2005, 63, (6–10), 615 LINK https://doi.org/10.1016/j.elstat.2005.03.026 [Google Scholar]
  30. Hoard J., Laing P., Balmer M. L., and Tonkyn R. SAE Technical Paper 2000-01-2895, SAE International, Warrendale, USA, 16th October, 2000 LINK https://doi.org/10.4271/2000-01-2895 [Google Scholar]
  31. Tonkyn R., Barlow S., Balmer M. L., Orlando T., Hoard J. H., and Goulette D. SAE Technical Paper 971716, SAE International, Warrendale, USA, 1st May, 1997 LINK https://doi.org/10.4271/971716 [Google Scholar]
  32. Penetrante B. M., Brusasco R. M., Merritt B. T., Pitz W. J., and Vogtlin G. E. SAE Technical Paper 1999-01-3637, SAE International, Warrendale, USA, 25th October, 1999 LINK https://doi.org/10.4271/1999-01-3637 [Google Scholar]
  33. ‘Plasma Removal of Methane from Natural Gas Dual-Fuel Engines (PROMENADE)’, UK Research and Innovation, Swindon, UK:https://gtr.ukri.org/projects?ref=102661 (Accessed on 30th September 2019) [Google Scholar]
  34. Strobel M., Lyons C. S., and Mittal K. L. “Plasma Surface Modification of Polymers: Relevance to Adhesion”, eds. VSP BV, Zeist, The Netherlands, 1994, 290 pp [Google Scholar]
  35. Kaplan S. L., and Rose P. W. Int. J. Adhes. Adhes., 1991, 11, (2), 109 LINK https://doi.org/10.1016/0143-7496(91)90035-g [Google Scholar]
  36. Kaplan S.L., and Rose P. W. Plastics Eng., 1988, 44, (5), 77 [Google Scholar]
  37. Mattox D. M. “Handbook of Physical Vapor Deposition (PVD) Processing”, 2nd Edn., Elsevier Inc, Burlington, USA, 2010, 792 pp [Google Scholar]
  38. Liu C., Li M., Wang J., Zhou X., Guo Q., Yan J., and Li Y. Chinese J. Catal., 2016, 37, (3), 340 LINK https://doi.org/10.1016/S1872-2067(15)61020-8 [Google Scholar]
  39. Jiang Y., Fu T., J., and Li Z. J. Energy Chem., 2013, 22, (3), 506 LINK https://doi.org/10.1016/S2095-4956(13)60066-2 [Google Scholar]
  40. Wang Z., Zhang Y., Neyts E. C., Cao X., Zhang X., Jang B. W.-L., and Liu C. ACS Catal., 2018, 8, (3), 2093 LINK https://doi.org/10.1021/acscatal.7b03723 [Google Scholar]
  41. Liu Y., Pan Y., Kuai P., and Liu C. Catal. Lett., 2010, 135, (3–4), 241 LINK https://doi.org/10.1007/s10562-010-0290-7 [Google Scholar]
  42. Hiden Analytical, ‘Using a Dielectric Barrier Discharge for Plasma Modification of Catalysts’, AZO Materials, Manchester, UK, 28th March, 2018, 10 pp LINK https://www.azom.com/article.aspx?ArticleID=15503 [Google Scholar]
  43. Cheng D., Zhu X., Ben Y., He F., Cui L., and Liu C. Catal. Today, 2006, 115, (1–4), 205 LINK https://doi.org/10.1016/j.cattod.2006.02.063 [Google Scholar]
  44. Lee D. H., Song Y.-H., Kim K.-T., Jo S., and Kang H. Catal. Today, 2019, 337, 15 LINK https://doi.org/10.1016/j.cattod.2019.04.071 [Google Scholar]
  45. Halman A. ‘Investigation of the Effects of Non Thermal Plasma and Microwaves on Mordenite’, PhD Thesis, Centre for Materials Science, School of Forensic and Applied Sciences, University of Central Lancashire, Preston, UK, 2020, submitted [Google Scholar]
  46. Zhang Y.-R., Van Laer K., Neyts E. C., and Bogaerts A. Appl. Catal. B: Environ., 2016, 185, 56 LINK https://doi.org/10.1016/j.apcatb.2015.12.009 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15759961130711
Loading
/content/journals/10.1595/205651320X15759961130711
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error