Skip to content
1887
Volume 64, Issue 4
  • ISSN: 2056-5135

Abstract

The main objective of this study was to evaluate the performance of a self-developed filler micro-embedded with () for toluene removal in a biofilter under various loading rates. The results show that the biofilter could reach 85% removal efficiency (RE) on the eighth day and remain above 90% RE when the empty bed residence time (EBRT) was 18 s and the inlet loading was not higher than 41.4 g m−3 h−1. Moreover, the biofilter could tolerate substantial transient shock loadings. After two shut-down experiments, the removal efficiency could be restored to above 80% after a recovery period of three days and six days, respectively. Sequence analysis of the 16S rRNA gene of fillers in four operating periods revealed that the highly efficient bacterial colonies in fillers mainly included and and that the abundance of increased significantly during the re-start period.

Loading

Article metrics loading...

/content/journals/10.1595/205651320X15831468405344
2020-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/64/4/Shunyi_16a_Imp.html?itemId=/content/journals/10.1595/205651320X15831468405344&mimeType=html&fmt=ahah

References

  1. Delhoménie M.-C., and Heitz M. Crit. Rev. Biotechnol., 2005, 25, (1–2), 53 LINK https://doi.org/10.1080/07388550590935814 [Google Scholar]
  2. Underhill R., Lewis R. J., Freakley S. J., Douthwaite M., Miedziak P. J., Akdim O., Edwards J. K., and Hutchings G. J. Johnson Matthey Technol. Rev., 2018, 62, (4), 417 LINK https://www.technology.matthey.com/article/62/4/417-425/ [Google Scholar]
  3. Tham Y. J., Latif P. A., Abdullah A. M., Shamala-Devi A., and Taufiq-Yap Y. H. Bioresour. Technol., 2011, 102, (2), 724 LINK https://doi.org/10.1016/j.biortech.2010.08.068 [Google Scholar]
  4. Rene E. R., Mohammad B. T., Veiga M. C., and Kennes C. Bioresour. Technol., 2012, 116, 204 LINK https://doi.org/10.1016/j.biortech.2011.12.006 [Google Scholar]
  5. Deng Y., Yang F., Deng C., Yang J., Jia J., and Yuan H. Appl. Biochem. Biotechnol., 2017, 183, (3), 893 LINK https://doi.org/10.1007/s12010-017-2471-y [Google Scholar]
  6. Chen Y., Wang X., He S., Zhu S., and Shen S. J. Environ. Manage., 2016, 165, 11 LINK https://doi.org/10.1016/j.jenvman.2015.09.008 [Google Scholar]
  7. Dumont E., and Andrès Y. J. Chem. Technol. Biotechnol., 2010, 85, (3), 429 LINK https://doi.org/10.1002/jctb.2334 [Google Scholar]
  8. Zhu R., Li S., Bao X., and Dumont É. Sci. Rep., 2017, 7, 42241 LINK https://doi.org/10.1038/srep42241 [Google Scholar]
  9. Zuo Z., Gong T., Che Y., Liu R., Xu P., Jian H., Qiao C., Song C., and Yang C. Biodegradation, 2015, 26, (3), 223 LINK https://doi.org/10.1007/s10532-015-9729-2 [Google Scholar]
  10. Muñoz R., Hernández M., Segura A., Gouveia J., Rojas A., Ramos J. L., and Villaverde S. Appl. Microbiol. Biotechnol., 2009, 83, (1), 189 LINK https://doi.org/10.1007/s00253-009-1928-5 [Google Scholar]
  11. Littlejohns J. V., McAuley K. B., and Daugulis A. J. J. Hazard. Mater., 2010, 175, (1–3), 872 LINK https://doi.org/10.1016/j.jhazmat.2009.10.091 [Google Scholar]
  12. Ryu H. W., Cho K.-S., and Chung D. J. Bioresour. Technol., 2010, 101, (6), 1745 LINK https://doi.org/10.1016/j.biortech.2009.10.018 [Google Scholar]
  13. Nie Y., Zhu R., Li S., Li S., Wang M., and Yan Y. Chinese J. Environ. Eng., 2019, 13, (3), 678 [Google Scholar]
  14. Chen X., Qian W., Kong L., Xiong Y., and Tian S. Biochem. Eng. J., 2015, 98, 56 LINK https://doi.org/10.1016/j.bej.2015.02.025 [Google Scholar]
  15. Yang W.-F., Hsing H.-J., Yang Y.-C., and Shyng J.-Y. J. Hazard. Mater., 2007, 148, (3), 653 LINK https://doi.org/10.1016/j.jhazmat.2007.03.023 [Google Scholar]
  16. Zhu R., Li S., Wu Z., and Dumont É. Environ. Technol., 2017, 38, (8), 945 LINK https://doi.org/10.1080/09593330.2016.1214624 [Google Scholar]
  17. Luo Y., Li S., Ma H., and Wang Y. Trans. Chinese Soc. Agric. Eng., 2017, 33, (12), 218 (in Chinese) LINK https://www.ingentaconnect.com/content/tcsae/tcsae/2017/00000033/00000012/art00028 [Google Scholar]
  18. Liu Y., Quan X., Sun Y., Chen J., Xue D., and Chung J. S. J. Hazard. Mater., 2002, 95, (1–2), 199 LINK https://doi.org/10.1016/S0304-3894(02)00139-5 [Google Scholar]
  19. Logares R., Sunagawa S., Salazar G., Cornejo-Castillo F. M., Ferrera I., Sarmento H., Hingamp P., Ogata H., de Vargas C., Lima-Mendez G., Raes J., Poulain J., Jaillon O., Wincker P., Kandels-Lewis S., Karsenti E., Bork P., and Acinas S. G. Environ. Microbiol., 2014, 16, (9), 2659 LINK https://doi.org/10.1111/1462-2920.12250 [Google Scholar]
  20. Zhang J., Li L., and Liu J. Biochem. Eng. J., 2017, 118, 105 LINK https://doi.org/10.1016/j.bej.2016.11.015 [Google Scholar]
  21. Hu Q., Wang C., and Huang K. Chem. Eng. J., 2015, 279, 689 LINK https://doi.org/10.1016/j.cej.2015.05.019 [Google Scholar]
  22. Singh K., Giri B. S., Sahi A., Geed S. R., Kureel M. K., Singh S., Dubey S. K., Rai B. N., Kumar S., Upadhyay S. N., and Singh R. S. Bioresour. Technol., 2017, 242, 351 LINK https://doi.org/10.1016/j.biortech.2017.02.085 [Google Scholar]
  23. Wang M., Xu S., Li S., and Zhu R. J. Ind. Eng. Chem., 2019, 75, 224 LINK https://doi.org/10.1016/j.jiec.2019.03.027 [Google Scholar]
  24. Ding Y., Wu W., Han Z., and Chen Y. Biochem. Eng. J., 2008, 38, (2), 248 LINK https://doi.org/10.1016/j.bej.2007.07.011 [Google Scholar]
  25. Abbasian F., Lockington R., Megharaj M., and Naidu R. Appl. Biochem. Biotechnol., 2016, 178, (2), 224 LINK https://doi.org/10.1007/s12010-015-1881-y [Google Scholar]
  26. Song J., and Kinney K. A. Biotechnol. Bioeng., 2000, 68, (5), 508 LINK https://doi.org/10.1002/(SICI)1097-0290(20000605)68:5<508::AID-BIT4>3.0.CO;2-P [Google Scholar]
  27. Hajizadeh Y., Amin M.-M., and Parseh I. J. Ind. Eng. Chem., 2018, 62, 418 LINK https://doi.org/10.1016/j.jiec.2018.01.025 [Google Scholar]
  28. Li H., Huang S., Wei Z., Chen P., and Zhang Y. Sci. Total Environ., 2016, 562, 533 LINK https://doi.org/10.1016/j.scitotenv.2016.04.084 [Google Scholar]
  29. Liu H., Wang S.-J., Zhang J.-J., Dai H., Tang H., and Zhou N.-Y. Appl. Environ. Microbiol., 2011, 77, (13), 4547 LINK https://doi.org/10.1128/AEM.02543-10 [Google Scholar]
  30. Bergdoll L., Point E., Bayman F., and Picot D. Biochim. Biophys. Acta., 2012, 1817, S138 LINK https://doi.org/10.1016/j.bbabio.2012.06.364 [Google Scholar]
  31. Wolińska A., Kuźniar A., Zielenkiewicz U., Izak D., Szafranek-Nakonieczna A., Banach A., and Błaszczyk M. Appl. Soil Ecol., 2017, 119, 128 LINK https://doi.org/10.1016/j.apsoil.2017.06.009 [Google Scholar]
  32. Geed S. R., Kureel M. K., Shukla A. K., Singh R. S., and Rai B. N. Resour. Eff. Technol., 2016, 2, (1), S3 LINK https://doi.org/10.1016/j.reffit.2016.09.005 [Google Scholar]
  33. Kumar M., Giri B. S., Kim K.-H., Singh R. P., Rene E. R., López M. E., Rai B. N., Singh H., Prasad D., and Singh R. S. Bioresour. Technol., 2019, 285, 121317 LINK https://doi.org/10.1016/j.biortech.2019.121317 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651320X15831468405344
Loading
/content/journals/10.1595/205651320X15831468405344
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error