Skip to content
1887
Volume 58, Issue 3
  • ISSN: 2056-5135

Abstract

Having established that osmium is the densest metal at room temperature the question arises as to whether it is always the densest metal. It is shown here that at ambient pressure osmium is the densest metal at all temperatures, although there is an ambiguity below 150 K. At room temperature iridium becomes the densest metal above a pressure of 2.98 GPa, at which point the densities of the two metals are equal at 22,750 kg m–3.

Loading

Article metrics loading...

/content/journals/10.1595/147106714X682337
2014-01-01
2024-02-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/58/3/JMTR-58-03-Arblaster.html?itemId=/content/journals/10.1595/147106714X682337&mimeType=html&fmt=ahah

References

  1. Crabtree, R. H. J. Less-Common Met., 1979, 64, (1), P7 [Google Scholar]
  2. Arblaster, J. W. Platinum Metals Rev., 1989, 33, (1), 14 [Google Scholar]
  3. Arblaster, J. W. Platinum Metals Rev., 1995, 39, (4), 164 [Google Scholar]
  4. Arblaster, J. W. Platinum Metals Rev., 2010, 54, (2), 93 [Google Scholar]
  5. Arblaster, J. W. Platinum Metals Rev., 2013, 57, (3), 177 [Google Scholar]
  6. Arblaster, J. W. Platinum Metals Rev., 1997, 41, (4), 184 [Google Scholar]
  7. Arblaster, J. W. Platinum Metals Rev., 2013, 57, (2), 127 [Google Scholar]
  8. Cynn, H., Klepeis, J. E., Yoo C.-S., and Young, D. A. Phys. Rev. Lett., 2002, 88, (13), 135701 [Google Scholar]
  9. Liang Y., and Fang, Z. J. Phys.: Condens. Matter, 2006, 18, (39), 8749 [Google Scholar]
  10. Joshi, K. D., Jyoti G., and Gupta, S. C. High Pressure Res., 2003, 23, (4), 403 [Google Scholar]
  11. Kenichi, T. Phys. Rev. B, 2004, 70, (1), 012101 [Google Scholar]
  12. Occelli, F., Farber, D. L., Badro, J., Aracne, C. M., Teter, D. M., Hanfland, M., Canny B., and Couzinet, B. Phys. Rev. Lett., 2004, 93, (9), 095502 [Google Scholar]
  13. Voronin, G. A., Pantea, C., Zerda, T. W., Wang L., and Zhao, Y. J. Phys. Chem. Solids, 2005, 66, (5), 706 [Google Scholar]
  14. Pantea, C., Mihut, I., Ledbetter, H., Betts, J. B., Zhao, Y., Daemen, L. L., Cynn H., and Migliori, A. Acta Mater., 2009, 57, (2), 544 [Google Scholar]
  15. Pandey, D. K., Singh D., and Yadawa, P. K. Platinum Metals Rev., 2009, 53, (2), 91 [Google Scholar]
  16. Armentrout M. M., and Kavner, A. J. Appl. Phys., 2010, 107, (9), 093528 [Google Scholar]
  17. Chen, H., He, D., Liu, J., Li, Y., Peng, F., Li, Z., Wang J., and Bai, L. Eur. Phys. J. B, 2010, 73, (3), 321 [Google Scholar]
  18. Cerenius Y., and Dubrovinsky, L. J. Alloy Compd., 2000, 306, (1–2), 26 [Google Scholar]
  19. MacFarlane R. E., and Rayne, J. A. Phys. Lett., 1966, 20, (3), 234 [Google Scholar]
  20. Adamesku, R. A., Barkhatov V. A., and Yermakov, A. V. Vysokochistye Veschestva, 1990, (3), 219 [Google Scholar]
  21. Gschneidner K. A. Jr Solid State Phys., 1964, 16, 275 [Google Scholar]
  22. P. W. Bridgman, Daedalus, 1949, 77, (1), 187 [Google Scholar]
  23. Darling, A. S. Platinum Metals Rev., 1966, 10, (1), 14 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/147106714X682337
Loading
/content/journals/10.1595/147106714X682337
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error