Skip to content
1887
Volume 58, Issue 3
  • ISSN: 2056-5135
  • oa Comparative Investigations on Platinum Cluster Salts

    Experimental characterisation of platinum carbonyl cluster salts for applications in molecular electronics

  • Authors: By Giulia P. M. Bignami*1, Alessandro Ceriotti1, Patrizia R. Mussini1, Cesare Oliva1, Giuliano Longoni2, Stefano Zacchini2, Mattia Gaboardi3, Marcello Mazzani3 and Mauro Riccò1,2,3
  • Affiliations: 1 University of MilanVia Golgi 19, 20133 MilanItaly 2 University of BolognaViale Risorgimento 4, 40136 BolognaItaly 3 University of ParmaViale Usberti 7/A, 43124 ParmaItaly
  • Source: Johnson Matthey Technology Review, Volume 58, Issue 3, Jul 2014, p. 114 - 123
  • DOI: https://doi.org/10.1595/147106714X682409
    • Published online: 01 Jan 2014

Abstract

To evaluate future applications of metallic clusters in nanoscience and nanotechnology, the electronic properties of the high-nuclearity carbonyl anionic platinum cluster [Pt(CO)]4– were investigated using two different organic cations. In particular, -diethyl viologen dication (Vio2+) and -dimethyl-9,9-bis-acridinium dication (Acr2+) were employed as counterions, oxidising agents and characterisation probes. The reactions of [Pt(CO)]4– tetra--butylammonium salt, (TBA+)([Pt(CO)]4–), with both (Vio2+) and (Acr2+), used as tetraphenylborate salts, yielded two new compounds, which were isolated. The stoichiometries and properties of these new compounds were determined and compared on the basis of infrared (IR) solution spectra, electron spin resonance (ESR) analyses, fluorometric spectra, superconducting quantum interference device (SQUID) magnetometry and resistivity measurements. For Vio2+, a cation-exchange reaction produced the final compound (Vio2+)([Pt(CO)]4–), ‘PtVio’, which was structurally characterised by single crystal X-ray diffraction (XRD) analysis. However, when using Acr2+, a spontaneous redox reaction occurred and a (Acr+)(TBA+)([Pt(CO)]3–) stoichiometry for the precipitated solid, ‘PtAcr’, was inferred from the experimental evidence, leading to an interesting ‘doubly-radicalic salt’. This new type of salt, consisting of a radical anionic Pt cluster and a radical cation, is characterised by extremely simple synthesis and isolation processes and by the lowest solid-state resistivity found in high-nuclearity cluster salts with redox-active cations (1).

Loading

Article metrics loading...

/content/journals/10.1595/147106714X682409
2014-01-01
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/58/3/JMTR-58-03-Bignami.html?itemId=/content/journals/10.1595/147106714X682409&mimeType=html&fmt=ahah

References

  1. C. Femoni,, M. C. Iapalucci,, G. Longoni,, C. Tiozzo,, J. Wolowska,, S. Zacchini, E. Zazzaroni,, Chem. Eur. J., 2007, 13, (23), 6544 [Google Scholar]
  2. I. Ciabatti,, C. Femoni,, M. C. Iapalucci,, G. Longoni, S. Zacchini,, J. Clust. Sci., 2014, 25, (1), 115 [Google Scholar]
  3. B. G. Bagley,, Nature, 1970, 225, 1040 [Google Scholar]
  4. S. Fedi,, P. Zanello,, F. Laschi,, A. Ceriotti, S. El Afefey, J. Solid State Electrochem., 2009, 13, (10), 1497 [Google Scholar]
  5. C. Femoni,, M. C. Iapalucci,, F. Kaswalder,, G. Longoni, S. Zacchini,, Coord. Chem. Rev., 2006, 250, (11–12), 1580 [Google Scholar]
  6. E. Ahlberg,, O. Hammerich, V. D. Parker,, J. Am. Chem. Soc., 1981, 103, (4), 844 [Google Scholar]
  7. P. M. S. Monk, The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4ʹ-Bipyridine”, John Wiley & Sons, Chichester, UK, 1998 [Google Scholar]
  8. I. Spasojević,, S. I. Liochev, I. Fridovich,, Arch. Biochem. Biophys., 2000, 373, (2), 447 [Google Scholar]
  9. C. D. Geddes,, Dyes Pigments, 2000, 45, (3), 243 [Google Scholar]
  10. A. W-H. Mau,, J. M. Overbeek,, J. W. Loder, W. H. F. Sasse, J. Chem. Soc., Faraday Trans. 2, 1986, 82, (5), 869 [Google Scholar]
  11. P. Macchi,, Department of Chemistry and Biochemistry, University of Bern, personal communication, 2013
  12. G. Longoni, P. Chini,, J. Am. Chem. Soc., 1976, 98, (23), 7225 [Google Scholar]
  13. D. M. Washecheck,, E. J. Wucherer,, L. F. Dahl,, A. Ceriotti,, G. Longoni,, M. Manassero,, M. Sansoni, P. Chini,, J. Am. Chem. Soc., 1979, 101, (20), 6110 [Google Scholar]
  14. D. Collini,, C. Femoni,, M. C. Iapalucci, G. Longoni,, Comptes Rendus Chimie, 2005, 8, (9–10), 1645 [Google Scholar]
  15. G. Longoni, F. Morazzoni,, J. Chem. Soc., DaltonTrans., 1981, (8), 1735 [Google Scholar]
  16. B. Bleaney, K. D. Bowers,, Proc. R. Soc. Lond. A, 1952, 214, (1119), 451 [Google Scholar]
  17. C. Femoni,, M. C. Iapalucci,, G. Longoni,, J. Wolowska,, S. Zacchini,, P. Zanello,, S. Fedi,, M. Riccò,, D. Pontiroli, M. Mazzani,, J. Am. Chem. Soc., 2010, 132, (9), 2919 [Google Scholar]
  18. C. Femoni,, F. Kaswalder,, M. C. Iapalucci,, G. Longoni, S. Zacchini,, Eur. J. Inorg. Chem., 2007, (11), 1483 [Google Scholar]
  19. C. Femoni,, M. C. Iapalucci,, G. Longoni,, T. Lovato,, S. Stagni, S. Zacchini,, Inorg. Chem., 2010, 49, (13), 5992 [Google Scholar]
  20. G. Casalbore-Miceli,, N. Camaioni,, A. Geri,, G. Ridolò,, A. Zanelli,, M. C. Gallazzi,, M. Maggini, T. Benincori,, J. Electroanal. Chem., 2007, 603, (2), 227 [Google Scholar]
  21. S. Chatterjee,, S. Basu,, N. Ghosh, M. Chakrabarty,, Chem. Phys. Lett., 2004, 388, (1–3), 79 [Google Scholar]
  22. F. Millich, G. Oster,, J. Am. Chem. Soc., 1959, 81, (6), 1357 [Google Scholar]
/content/journals/10.1595/147106714X682409
Loading
/content/journals/10.1595/147106714X682409
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test