Skip to content
1887
Volume 58, Issue 3
  • ISSN: 2056-5135

Abstract

To evaluate future applications of metallic clusters in nanoscience and nanotechnology, the electronic properties of the high-nuclearity carbonyl anionic platinum cluster [Pt(CO)]4– were investigated using two different organic cations. In particular, -diethyl viologen dication (Vio2+) and -dimethyl-9,9-bis-acridinium dication (Acr2+) were employed as counterions, oxidising agents and characterisation probes. The reactions of [Pt(CO)]4– tetra--butylammonium salt, (TBA+)([Pt(CO)]4–), with both (Vio2+) and (Acr2+), used as tetraphenylborate salts, yielded two new compounds, which were isolated. The stoichiometries and properties of these new compounds were determined and compared on the basis of infrared (IR) solution spectra, electron spin resonance (ESR) analyses, fluorometric spectra, superconducting quantum interference device (SQUID) magnetometry and resistivity measurements. For Vio2+, a cation-exchange reaction produced the final compound (Vio2+)([Pt(CO)]4–), ‘PtVio’, which was structurally characterised by single crystal X-ray diffraction (XRD) analysis. However, when using Acr2+, a spontaneous redox reaction occurred and a (Acr+)(TBA+)([Pt(CO)]3–) stoichiometry for the precipitated solid, ‘PtAcr’, was inferred from the experimental evidence, leading to an interesting ‘doubly-radicalic salt’. This new type of salt, consisting of a radical anionic Pt cluster and a radical cation, is characterised by extremely simple synthesis and isolation processes and by the lowest solid-state resistivity found in high-nuclearity cluster salts with redox-active cations (1).

Loading

Article metrics loading...

/content/journals/10.1595/147106714X682409
2014-01-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/58/3/JMTR-58-03-Bignami.html?itemId=/content/journals/10.1595/147106714X682409&mimeType=html&fmt=ahah

References

  1. Femoni, C., Iapalucci, M. C., Longoni, G., Tiozzo, C., Wolowska, J., Zacchini S., and Zazzaroni, E. Chem. Eur. J., 2007, 13, (23), 6544 [Google Scholar]
  2. Ciabatti, I., Femoni, C., Iapalucci, M. C., Longoni G., and Zacchini, S. J. Clust. Sci., 2014, 25, (1), 115 [Google Scholar]
  3. Bagley, B. G. Nature, 1970, 225, 1040 [Google Scholar]
  4. Fedi, S., Zanello, P., Laschi, F., Ceriotti A., and El Afefey S. J. Solid State Electrochem., 2009, 13, (10), 1497 [Google Scholar]
  5. Femoni, C., Iapalucci, M. C., Kaswalder, F., Longoni G., and Zacchini, S. Coord. Chem. Rev., 2006, 250, (11–12), 1580 [Google Scholar]
  6. Ahlberg, E., Hammerich O., and Parker, V. D. J. Am. Chem. Soc., 1981, 103, (4), 844 [Google Scholar]
  7. Monk P. M. S. The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4ʹ-Bipyridine”, John Wiley & Sons, Chichester, UK, 1998 [Google Scholar]
  8. Spasojević, I., Liochev S. I., and Fridovich, I. Arch. Biochem. Biophys., 2000, 373, (2), 447 [Google Scholar]
  9. Geddes, C. D. Dyes Pigments, 2000, 45, (3), 243 [Google Scholar]
  10. Mau, A. W-H., Overbeek, J. M., Loder J. W., and Sasse W. H. F. J. Chem. Soc., Faraday Trans. 2, 1986, 82, (5), 869 [Google Scholar]
  11. Macchi, P. Department of Chemistry and Biochemistry, University of Bern, personal communication, 2013
  12. Longoni G., and Chini, P. J. Am. Chem. Soc., 1976, 98, (23), 7225 [Google Scholar]
  13. Washecheck, D. M., Wucherer, E. J., Dahl, L. F., Ceriotti, A., Longoni, G., Manassero, M., Sansoni M., and Chini, P. J. Am. Chem. Soc., 1979, 101, (20), 6110 [Google Scholar]
  14. Collini, D., Femoni, C., Iapalucci M. C., and Longoni, G. Comptes Rendus Chimie, 2005, 8, (9–10), 1645 [Google Scholar]
  15. Longoni G., and Morazzoni, F. J. Chem. Soc., DaltonTrans., 1981, (8), 1735 [Google Scholar]
  16. Bleaney B., and Bowers, K. D. Proc. R. Soc. Lond. A, 1952, 214, (1119), 451 [Google Scholar]
  17. Femoni, C., Iapalucci, M. C., Longoni, G., Wolowska, J., Zacchini, S., Zanello, P., Fedi, S., Riccò, M., Pontiroli D., and Mazzani, M. J. Am. Chem. Soc., 2010, 132, (9), 2919 [Google Scholar]
  18. Femoni, C., Kaswalder, F., Iapalucci, M. C., Longoni G., and Zacchini, S. Eur. J. Inorg. Chem., 2007, (11), 1483 [Google Scholar]
  19. Femoni, C., Iapalucci, M. C., Longoni, G., Lovato, T., Stagni S., and Zacchini, S. Inorg. Chem., 2010, 49, (13), 5992 [Google Scholar]
  20. Casalbore-Miceli, G., Camaioni, N., Geri, A., Ridolò, G., Zanelli, A., Gallazzi, M. C., Maggini M., and Benincori, T. J. Electroanal. Chem., 2007, 603, (2), 227 [Google Scholar]
  21. Chatterjee, S., Basu, S., Ghosh N., and Chakrabarty, M. Chem. Phys. Lett., 2004, 388, (1–3), 79 [Google Scholar]
  22. Millich F., and Oster, G. J. Am. Chem. Soc., 1959, 81, (6), 1357 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/147106714X682409
Loading
/content/journals/10.1595/147106714X682409
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error