Skip to content
1887
Volume 59, Issue 2
  • ISSN: 2056-5135
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/10.1595/205651315X686804
2015-01-01
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/59/2/JMTR-59-2-Stitt.html?itemId=/content/journals/10.1595/205651315X686804&mimeType=html&fmt=ahah

References

  1. Dudukovic M. P., Larachi F., and Mills P. L. Chem. Eng. Sci., 1999, 54, (13–14), 1975 [Google Scholar]
  2. Rowe P. N. ‘The Correlation of Engineering Data’, The Chemical Engineer, March 1963, p. CE 69. Republished: The Chemical Engineer, May 2001, p. 54 [Google Scholar]
  3. Berger R. J., Stitt E. H., Marin G. B., Kapteijn F., and Moulijn J. A. CatTech, 2001, 5, (1), 36 [Google Scholar]
  4. Stitt E. H. ‘Past and Future in Multiphase Reactor Design: A View from Industry’, 4th International Symposium on Catalysis in Multiphase Reactors, CAMURE-4, Lausanne, Switzerland, 22nd 25th September, 2002 [Google Scholar]
  5. Holdo A. E. Int. J. Appl. Mech. Eng., 2002, 7, (1), 85 [Google Scholar]
  6. Stopford P. J. Appl. Math. Modelling, 2002, 26, (2), 351 [Google Scholar]
  7. Fujii K. Prog. Aerosp. Sci., 2005, 41, (6), 455 [Google Scholar]
  8. Lane S. N., Bradbrook K. F., Richards K. S., Biron P. A., and Roy A. G. Geomorphology, 1999, 29, (1–2), 1 [Google Scholar]
  9. Bates P. D., Lane S. N., and Ferguson R. I. “Computational Fluid Dynamics: Applications in Environmental Hydraulics”, eds. John Wiley & Sons Ltd, West Sussex, UK, 2005 [Google Scholar]
  10. Baukal C. E. Jr., Gershtein V., and Li X. J. “Computational Fluid Dynamics in Industrial Combustion”, eds. Industrial Combustion, CRC Press LLC, Florida, USA, 2001 [Google Scholar]
  11. Habibi A., Merci B., and Heynderickx G. J. Computers Chem. Eng., 2007, 31, (11), 1389 [Google Scholar]
  12. Corma A., Llopis F., Monton J. B., and Weller S. W. Chem. Eng. Sci., 1988, 43, (4), 785 [Google Scholar]
  13. Keil F. J. Stud. Surf. Sci. Catal., 2001, 133, 41 [Google Scholar]
  14. Berty J. M., Lee S., Szeifert F., and Cropley J. B. Chem. Eng. Commun., 1989, 76, (1), 9 [Google Scholar]
  15. Dautzenberg F. M., Bradley S. A., Gattuso M. J., and Bertolacini R. J. ‘Ten Guidelines for Catalyst Testing’, in “Characterization and Catalyst Development: An Interactive Approach”, eds. ACS Symposium Series, Vol. 411, American Chemical Society, Washington DC, USA, 1989 [Google Scholar]
  16. Sjöblom J. ‘Parameter Estimation in Heterogeneous Catalysis’, PhD Thesis, Department of Chemical and Biological Engineering, Chalmers University of Technology, Sweden, 2009 [Google Scholar]
  17. Jansson J. ‘Studies of Catalytic Low-temperature CO Oxidation over Cobalt Oxide and Related Transition Metal Oxides’, PhD Thesis, Chalmers University of Technology, Sweden, 2002 [Google Scholar]
  18. Quiney A. S., and Schuurman Y. Chem. Eng. Sci., 2007, 62, (18–20), 5026 [Google Scholar]
  19. Wilkinson S. K. ‘Reaction Kinetics in Formulated Industrial Catalysts’, Eng. D. Thesis, School of Chemical Engineering, University of Birmingham, UK, 2014 [Google Scholar]
  20. Vajda S., Valko P., and Turányi T. Int. J. Chem. Kinet., 1985, 17, (1), 55 [Google Scholar]
  21. Mhadeshwar A. B., and Vlachos D. G. Catal. Today, 2005, 105, (1), 162 [Google Scholar]
  22. Raimondeau S., Aghalayam P., Mhadeshwar A. B., and Vlachos D. G. Ind. Eng. Chem. Res., 2003, 42, (6), 1174 [Google Scholar]
  23. Song J., Stephanopoulos G., and Green W. H. Chem. Eng. Sci., 2002, 57, (21), 4475 [Google Scholar]
  24. Meinrath G., Ekberg C., Landgren A., and Liljenzin J. O. Talanta, 2000, 51, (2), 231 [Google Scholar]
  25. Benbow J., and Bridgwater J. “Paste Flow and Extrusion”, Oxford Series on Advanced Manufacturing,Clarendon Press, Oxford, UK, 1993 [Google Scholar]
  26. Benbow J. J., Jazayeri S. H., and Bridgwater J. Powder. Tech., 1991, 65, (1–3), 393 [Google Scholar]
  27. Sederman A. J., and Gladden L. F. Chem. Eng. Sci., 2001, 56, (8), 2615 [Google Scholar]
  28. Toye D., Marchot P., Crine M., and L’Homme G. Meas. Sci. Technol., 1996, 7, (3), 436 [Google Scholar]
  29. Jia X., and Williams R. A. Powder Tech., 2001, 120, (3), 175 [Google Scholar]
  30. Caulkin R., Ahmad A., Fairweather M., Jia X., and Williams R. A. Comput. Chem. Eng., 2009, 33, (1), 10 [Google Scholar]
  31. Xu C., Jia X., Williams R. A., Stitt E. H., Nijemeisland M., El-Bachir S., Sederman A. J., and Gladden L. F. Comput. Model. Eng. Sci., 2008, 23, (2), 117 [Google Scholar]
  32. Caulkin R., Jia X., Xu C., Fairweather M., Williams R. A., Stitt H., Nijemeisland M., Aferka S., Crine M., Léonard A., Toye D., and Marchot P. Ind. Eng. Chem. Res., 2009, 48, (1), 202 [Google Scholar]
  33. Li Y., Xu Y., and Thornton C. Powder Technol., 2005, 160, (3), 219 [Google Scholar]
  34. ‘The Beginning of a New Era in Design: Calibrated Discrete Element Modelling’, Australian Bulk Handling Review, 2011, 16, (6), p. 14 [Google Scholar]
  35. Bharadwaj R., Ketterhagen W. R., and Hancock B. C. Chem. Eng. Sci., 2010, 65, (21), 5747 [Google Scholar]
  36. Hancock B. C., Mojica N., John-Green K. St., Elliott J. A., and Bharadwaj R. Int. J. Pharmaceutics, 2010, 384, (1–2), 39 [Google Scholar]
  37. Ketterhagen W. R., Bharadwaj R., and Hancock B. C. Int. J. Pharmaceutics, 2010, 392, (1–2), 107 [Google Scholar]
  38. Bharadwaj R., Smith C., and Hancock B. C. Int. J. Pharmaceutics, 2010, 402, (1–2), 50 [Google Scholar]
  39. Dong H., and Moys M. H. Min. Eng., 2003, 16, (6), 543 [Google Scholar]
  40. Marigo M., and Stitt E. H. KONA Powder Part. J., 2015, 32, 236 [Google Scholar]
  41. Marigo M., Cairns D. L., Davies M., Cook M., Ingram A., and Stitt E. H. Comput. Model. Eng. Sci., 2010, 59, (3), 217 [Google Scholar]
  42. Marigo M., Cairns D. L., Davies M., Ingram A., and Stitt E. H. Powder Technol., 2011, 212, (1), 17 [Google Scholar]
  43. Marigo M., Davies M., Leadbeater T., Cairns D. L., Ingram A., and Stitt E. H. Int. J. Pharmaceutics, 2013, 446, (1–2), 46 [Google Scholar]
  44. Hassanpour A., Tan H., Bayly A., Gopalkrishnan P., Ng B., and Ghadiri M. Powder Technol., 2011, 206, (1–2), 189 [Google Scholar]
  45. Mayer-Laigle C., Gatumel C., and Berthiaux H. Chem. Eng. Res. Des., 2015, 95, 248 [Google Scholar]
  46. Marigo M. ‘Discrete Element Method Modelling of Complex Granular Motion in Mixing Vessels: Evaluation and Validation’, Eng.D. Thesis, School of Engineering, University of Birmingham, UK, 2012 [Google Scholar]
  47. Pianko-Oprych P., Nienow A. W., and Barigou M. Chem. Eng. Sci., 2009, 64, (23), 4955 [Google Scholar]
  48. Chiti F., Bakalis S., Bujalski W., Barigou M., Eaglesham A., and Nienow A. W. Chem. Eng. Res. Des., 2011, 89, (10), 1947 [Google Scholar]
  49. Dixon A. G., Nijemeisland M., and Stitt E. H. Adv. Chem. Eng., 2006, 31 , 307. [Google Scholar]
  50. Reddy R. K., and Joshi J. B. Chem. Eng. Res. Des., 2008, 86, (5), 444 [Google Scholar]
  51. Atmakidis T., and Kenig E. Y. Chem. Eng. J., 2009, 155, (1), 404 [Google Scholar]
  52. Magnico P. AIChE J., 2009, 55, (4), 849 [Google Scholar]
  53. Augier F., Idoux F., and Delenne J. Y. Chem. Eng. Sci., 2010, 65, (3), 1055 [Google Scholar]
  54. Baker M. J., and Tabor G. R. Comput. Chem. Eng., 2010, 34, (6), 878 [Google Scholar]
  55. Dixon A. G., and Nijemeisland M. Ind. Eng. Chem. Res., 2001, 40, (23), 5246 [Google Scholar]
  56. Bai H., Theuerkauf J., Gillis P. A., and Witt P. M. Ind. Eng. Chem. Res., 2009, 48, (8), 4060 [Google Scholar]
  57. Guardo A., Coussirat M., Larrayoz M. A., Recasens F., and Egusquiza E. Ind. Eng. Chem Res., 2004, 43, (22), 7049 [Google Scholar]
  58. Guardo A., Coussirat M., Recasens F., Larrayoz M. A., and Escaler X. Chem. Eng. Sci., 2006, 61, (13), 4341 [Google Scholar]
  59. Kuroki M., Ookawara S., Street D., and Ogawa K. ‘High-fidelity CFD Modeling of Particle-to-fluid Heat Transfer in Packed Bed Reactors’, Proceedings of European Congress of Chemical Engineering (ECCE6), Paper 1102, Copenhagen, Denmark, 16th–20th September, 2007 [Google Scholar]
  60. Gunjal P. R., Ranade V. V., and Chaudhari R. V. AIChE J., 2005, 51, (2), 365 [Google Scholar]
  61. Robbins D. J., El-Bachir M. S., Gladden L. F., Cant R. S., and von Harbou E. AIChE J., 2012, 58, (12), 3904 [Google Scholar]
  62. Manz B., Gladden L. F., and Warren P. B. AIChE J., 1999, 45, (9), 1845 [Google Scholar]
  63. Mantle M. D., Sederman A. J., and Gladden L. F. Chem. Eng. Sci., 2001, 56, (2), 523 [Google Scholar]
  64. Freund H., Bauer J., Zeiser T., and Emig G. Ind. Eng. Chem. Res., 2005, 44, (16), 6423 [Google Scholar]
  65. Guardo A., Coussirat M., Larrayoz M. A., Recasens F., and Egusquiza E. Chem. Eng. Sci., 2005, 60, (6), 1733 [Google Scholar]
  66. Coussirat M., Guardo A., Mateos B., and Egusquiza E. Chem. Eng. Sci., 2007, 62, (23), 6897 [Google Scholar]
  67. Dixon A. G., Taskin M. E., Nijemeisland M., and Stitt E. H. Comput. Chem. Eng., 2011, 35, (7), 1171 [Google Scholar]
  68. Ookawara S., Kuroki M., Street D., and Ogawa K. ‘High-fidelity DEM-CFD Modeling of Packed Bed Reactors for Process Intensification’, Proceedings of European Congress of Chemical Engineering (ECCE6), Paper 1105, Copenhagen, Denmark, 16th 20th September, 2007 [Google Scholar]
  69. Kuroki M., Ookawara S., and Ogawa K. J. Chem. Eng. Jpn, 2009, 42, Suppl. 1, s73 [Google Scholar]
  70. Eppinger T., Seidler K., and Kraume M. Chem. Eng. J., 2011, 166, (1), 324 [Google Scholar]
  71. Dixon A. G., Nijemeisland M., and Stitt E. H. Comput. Chem. Eng., 2013, 48, 135 [Google Scholar]
  72. Bu S. S., Yang J., Zhou M., Li S. Y., Wang Q. W., and Guo Z. X. Nucl. Eng. Des., 2014, 270, 21 [Google Scholar]
  73. Zehner P., and Schlünder E. U. Chem. Ing. Technik, 1970, 42, (14), 933 [Google Scholar]
  74. Zehner P., and Schlünder E. U. Chem. Ing. Technik, 1972, 44, (23), 1303 [Google Scholar]
  75. Dixon A. G., Gurnon A. K., Nijemeisland M., and Stitt E. H. Int. Commun. Heat Mass Trans., 2013, 42, 1 [Google Scholar]
  76. Dixon A. G., Walls G., Stanness H., Nijemeisland M., and Stitt E. H. Chem. Eng. J., 2012, 200–202, 344 [Google Scholar]
  77. Guardo A., Coussirat M., Recasens F., Larrayoz M. A., and Escaler X. Chem. Eng. Sci., 2006, 61, (13), 4341 [Google Scholar]
  78. Mirhashemi F. S., Hashemabadi S. H., and Noroozi S. Int. Commun. Heat Mass Trans., 2011, 38, (8), 1148 [Google Scholar]
  79. Guardo A., Casanovas M., Ramírez E., Recasens F., Magaña I., Martínez D., and Larrayoz M. A. Chem. Eng. Sci., 2007, 62, (18–20), 5054 [Google Scholar]
  80. Dixon A. G., Taskin M. E., Nijemeisland M., and Stitt E. H. Ind. Eng. Chem. Res., 2010, 49, (19), 9012 [Google Scholar]
  81. Hite R. H., and Jackson R. Chem. Eng. Sci., 1977, 32, (7), 703 [Google Scholar]
  82. Hou K., and Hughes R. Chem. Eng. J., 2001, 82, (1–3), 311 [Google Scholar]
  83. Behnam M., Dixon A. G., Wright P. M., Nijemeisland M., and Stitt E. H. Chem. Eng. J., 2012, 207–208, 690 [Google Scholar]
  84. Box G. E. P. J. Am. Stat. Assoc., 1976, 71, (356), 791 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651315X686804
Loading
/content/journals/10.1595/205651315X686804
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error