Skip to content
1887
Volume 59, Issue 3
  • ISSN: 2056-5135

Abstract

Computational methods are a burgeoning science within industry. In particular, recent advances have seen first-principles atomic-scale modelling leave the realm of the academic theory lab and enter mainstream industrial research. Herein we present an overview, focusing on catalytic applications in fuel cells, emission control and process catalysis and looking at some real industrial examples being undertaken within the Johnson Matthey Technology Centre. We proceed to discuss some underpinning research projects and give a perspective on where developments will come in the short to mid-term.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651315X687975
2015-04-01
2025-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/59/3/JMTR-59-3-Jones.html?itemId=/content/journals/10.1595/205651315X687975&mimeType=html&fmt=ahah

References

  1. P. Hohenberg, W. Kohn, , Phys. Rev., 1964, 136, (3B), B864 LINK http://dx.doi.org/10.1103/PhysRev.136.B864
    [Google Scholar]
  2. W. Kohn, L. J. Sham, , Phys. Rev., 1965, 140, (4A), A1133 LINK http://dx.doi.org/10.1103/PhysRev.140.A1133
    [Google Scholar]
  3. J. K. Nørskov, F. Abild-Pedersen, F. Studt, T. Bligaard, , Proc. Nat. Acad. Sci., 2011, 108, (3), 937 LINK http://dx.doi.org/10.1073/pnas.1006652108
    [Google Scholar]
  4. F. Göltl, P. Sautet, , ‘Density Functional Theory as a Key Approach in Surface Chemistry and Heterogeneous Catalysis’, in “Comprehensive Inorganic Chemistry II: From Elements to Applications”, 2nd Edn., eds. J. Reedijk, K. Poeppelmeier, , Volume 7, Chapter 15, Elsevier, The Netherlands, 2013, pp. 405420
    [Google Scholar]
  5. ‘Top 500 Supercomputing Sites’, TOP500.org, New Orleans, Louisiana, USA (Accessed on 2nd April 2015)
  6. J. L. Whitten, H. Yang, , Surf. Sci. Rep., 1996, 24, (3–4), 55 LINK http://dx.doi.org/10.1016/0167-5729(96)80004-5
    [Google Scholar]
  7. B. Hammer, J. K. Nørskov, , Adv. Catal., 2000, 45, 71 LINK http://dx.doi.org/10.1016/S0360-0564(02)45013-4
    [Google Scholar]
  8. C. Chizallet, G. Bonnard, E. Krebs, L. Bisson, C. Thomazeau, P. Raybaud, , J. Phys. Chem. C, 2011, 115, (24), 12135 LINK http://dx.doi.org/10.1021/jp202811t
    [Google Scholar]
  9. J. Rossmeisl, Z.-W. Qu, H. Zhu, G.-J. Kroes, J. K. Nørskov, , J. Electroanal. Chem., 2007, 607, (1–2), 83 LINK http://dx.doi.org/10.1016/j.jelechem.2006.11.008
    [Google Scholar]
  10. K. Reuter, M. Scheffler, , Phys. Rev. B, 2002, 65, (3), 035406 LINK http://dx.doi.org/10.1103/PhysRevB.65.035406
    [Google Scholar]
  11. M. Digne, P. Sautet, P. Raybaud, P. Euzen, H. Tulhoat, , J. Catal., 2002, 211, (1), 1 LINK http://dx.doi.org/10.1016/S0021-9517(02)93741-3
    [Google Scholar]
  12. J. K. Nørskov, F. Studt, F. Abild-Pedersen, T. Bligaard, , “Fundamental Concepts in Heterogeneous Catalysis”, John Wiley and Sons, Hoboken, New Jersey, USA, 2014
    [Google Scholar]
  13. A. Walsh, A. A. Sokol, C. R. A. Catlow, , “Computational Approaches to Energy Materials”, John Wiley and Sons, Chichester, UK, 2013 LINK http://dx.doi.org/10.1002/9781118551462
    [Google Scholar]
  14. R. A. van Santen, M. Neurock, , “Molecular Heterogeneous Catalysis: A Conceptual and Computational Approach”, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2006
    [Google Scholar]
  15. Chorkendorff, J. W. Niemantsverdriet, , “Concepts of Modern Catalysis and Kinetics”, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2003
    [Google Scholar]
  16. G. Jones, , Catal. Struct. React., 2015, 00, 1 LINK http://dx.doi.org/10.1179/2055075814Y.0000000010
    [Google Scholar]
  17. The White House: About the Materials Genome Initiative,: https://www.whitehouse.gov/mgi(Accessed on 20th April 2015)
  18. A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. A. Persson, , Appl. Phys. Lett.: Mater., 2013, 1, (1), 011002 LINK http://dx.doi.org/10.1063/1.4812323
    [Google Scholar]
  19. J. S. Hummelshøj, F. Abild-Pedersen, F. Studt, T. Bligaard, J. K. Nørskov, , Angew. Chem. Int. Ed., 2012, 51, (1), 272 LINK http://dx.doi.org/10.1002/anie.201107947
    [Google Scholar]
  20. Quantum Materials Informatics Project,: Publications http://www.qmip.org/qmip.org/Welcome.html (Accessed on 20th April 2015)
  21. G. Pizzi, A. Cepellotti, R. Sabatini, N. Marzari, B. Kozinsky, , ‘AiiDA: Automated Interactive Infrastructure and Database for Computational Science’, arXiv:1504.01163v1 [physics.comp-ph], 5th April, 2015 LINK http://arxiv.org/abs/1504.01163
    [Google Scholar]
  22. Iowa State University, College of Engineering: Combinatorial Sciences and Materials Informatics Collaboratory (CoSMIC),: http://cosmic.mse.iastate.edu/ (Accessed on 20th April 2015)
  23. A. A. C. Braga, N. H. Morgon, G. Ujaque, F. Maseras, , J. Am. Chem. Soc., 2005, 127, (25), 9298 LINK http://dx.doi.org/10.1021/ja050583i
    [Google Scholar]
  24. D. García-Cuadrado, A. A. C. Braga, F. Maseras, A. M. Echavarren, , J. Am. Chem. Soc., 2006, 128, (4), 1066 LINK http://dx.doi.org/10.1021/ja056165v
    [Google Scholar]
  25. L. J. Goossen, D. Koley, H. L. Hermann, W Thiel, . Organometallics, 2006, 25, (1), 54 LINK http://dx.doi.org/10.1021/om050685h
    [Google Scholar]
  26. E. Napolitano, V. Farina, M. Persico, , Organometallics, 2003, 22, (20), 4030 LINK http://dx.doi.org/10.1021/om020519z
    [Google Scholar]
  27. S. Kozuch, C. Amatore, A. Jutand, S Shaik, . Organometallics, 2005, 24, (10), 2319 LINK http://dx.doi.org/10.1021/om050160p
    [Google Scholar]
  28. R. Álvarez, O. N. Faza, C. S. López, Á.R. de Lera, , Org. Lett., 2006, 8, (1), 35 LINK http://dx.doi.org/10.1021/ol052398f
    [Google Scholar]
  29. T.-X. Zhang, Z. Li, , Comput. Theor. Chem., 2013, 1016, 28 LINK http://dx.doi.org/10.1016/j.comptc.2013.04.015
    [Google Scholar]
  30. A. A. C. Braga, G. Ujaque, F. Maseras, , Organometallics, 2006, 25, (15), 3647 LINK http://dx.doi.org/10.1021/om060380i
    [Google Scholar]
  31. L. Zhang, D.-C. Fang, , J. Org. Chem., 2013, 78, (6), 2405 LINK http://dx.doi.org/10.1021/jo302567s
    [Google Scholar]
  32. A. Fromm, C. van Wüllen, D. Hackenberger, L. J. Gooßen, , J. Am. Chem. Soc., 2014, 136, (28), 10007 LINK http://dx.doi.org/10.1021/ja503295x
    [Google Scholar]
  33. L. Sikk, J. Tammiku-Taul, P. Burk, A. Kotschy, , J. Mol. Model., 2012, 18, (7), 3025 LINK http://dx.doi.org/10.1007/s00894-011-1311-1
    [Google Scholar]
  34. M. García-Melchor, M. C. Pacheco, C. Nájera, A. Lledós, G. Ujaque, , ACS Catal., 2012, 2, (1), 135 LINK http://dx.doi.org/10.1021/cs200526x
    [Google Scholar]
  35. D. Zhao, X. Li, K. Han, X. Li, Y. Wang, , J. Phys. Chem. A, 2015, 119, (12), 2989 LINK http://dx.doi.org/10.1021/jp511564b
    [Google Scholar]
  36. S. Yu, S. Liu, Y. Lan, B. Wan, X. Li, , J. Am. Chem. Soc., 2015, 137, (4), 1623 LINK http://dx.doi.org/10.1021/ja511796h
    [Google Scholar]
  37. Y. Wu, L. Liu, K. Yan, P. Xu, Y. Gao, Y. Zhao, , J. Org. Chem., 2014, 79, (17), 8118 LINK http://dx.doi.org/10.1021/jo501321m
    [Google Scholar]
  38. Q. Ren, F. Jiang, H. Gong, , J. Organomet. Chem., 2014, 770, 130 LINK http://dx.doi.org/10.1016/j.jorganchem.2014.08.015
    [Google Scholar]
  39. L. Liu, Y. Lv, Y. Wu, Gao, X Zeng, Z. Gao, Y. Tang, G. Zhao, , RSC Adv., 2014, 4, (5), 2322 LINK http://dx.doi.org/10.1039/C3RA45212C
    [Google Scholar]
  40. D. Liu, Y. Li, X. Qi, C. Liu, Y. Lan, A. Lei, , Org. Lett., 2015, 17, (4), 998 LINK http://dx.doi.org/10.1021/acs.orglett.5b00104
    [Google Scholar]
  41. B. Zheng, F. Tang, J. Luo, J. W. Schultz, N. P. Rath, L. M. Mirica, , J. Am. Chem. Soc., 2014, 136, (17), 6499 LINK http://dx.doi.org/10.1021/ja5024749
    [Google Scholar]
  42. S. K. Sontag, J. A. Bilbrey, N. E. Huddleston, G. R. Sheppard, W. D. Allen, J. Locklin, , J. Org. Chem., 2014, 79, (4), 1836 LINK http://dx.doi.org/10.1021/jo402259z
    [Google Scholar]
  43. A. Hedström, Z. Izakian, I. Vreto, C.-J. Wallentin, P.-O. Norrby, , Chem. Eur. J., 2015, 21, (15), 5946 LINK http://dx.doi.org/10.1002/chem.201406096
    [Google Scholar]
  44. A. Bekhradnia, P.-O. Norrby, , Dalton Trans., 2015, 44, (9), 3959 LINK http://dx.doi.org/10.1039/C4DT03491K
    [Google Scholar]
  45. R. B. Bedford, P. B. Brenner, E. Carter, J. Clifton, P. M. Cogswell, N. J. Gower, M. F. Haddow, J. N. Harvey, J. A. Kehl, D. M. Murphy, E. C. Neeve, M. L. Neidig, J. Nunn, B. E. R. Snyder, J Taylor, ., Organometallics, 2014, 33, (20), 5767 LINK http://dx.doi.org/10.1021/om500518r
    [Google Scholar]
  46. S. L. Daifuku, M. H. Al-Afyouni, B. E. R. Snyder, J. L. Kneebone, M. L. Neidig, , J. Am. Chem. Soc., 2014, 136, (25), 9132 LINK http://dx.doi.org/10.1021/ja503596m
    [Google Scholar]
  47. Y. Sun, H. Jiang, H. Tang, H. Xu, H. Liu, K. Sun, X. Huang, , Mol. Phys., 2014, 112, (16), 2107 LINK http://dx.doi.org/10.1080/00268976.2014.886738
    [Google Scholar]
  48. H. Kato, K. Hirano, D. Kurauchi, N. Toriumi, M. Uchiyama, , Chem. Eur. J., 2015, 21, (10), 3895 LINK http://dx.doi.org/10.1002/chem.201406292
    [Google Scholar]
  49. G.-Y. Ruan, Y. Zhang, Z.-H. Qi, D.-X. Ai, W. Liu, Y. Wang, , Comput. Theor. Chem., 2015, 1054, 16 LINK http://dx.doi.org/10.1016/j.comptc.2014.12.008
    [Google Scholar]
  50. K. Kubota, E. Yamamoto, H. Ito, , J. Am. Chem. Soc., 2015, 137, (1), 420 LINK http://dx.doi.org/10.1021/ja511247z
    [Google Scholar]
  51. D. Alberico, M. E. Scott, M. Lautens, , Chem. Rev., 2007, 107, (1), 174 LINK http://dx.doi.org/10.1021/cr0509760
    [Google Scholar]
  52. L. Ackermann, R. Vicente, A. R. Kapdi, , Angew. Chem. Int. Ed., 2009, 48, (52), 9792 LINK http://dx.doi.org/10.1002/anie.200902996
    [Google Scholar]
  53. A. Sharma, D. Vacchani, E. Van der Eycken, , Chem. Eur. J., 2013, 19, (4), 1158 LINK http://dx.doi.org/10.1002/chem.201201868
    [Google Scholar]
  54. J. Roger, A. L. Gottumukkala, H. Doucet, , ChemCatChem, 2010, 2, (1), 20 LINK http://dx.doi.org/10.1002/cctc.200900074
    [Google Scholar]
  55. N. Kuhl, M. N. Hopkinson, J. Wencel-Delord, F. Glorius, , Angew. Chem. Int. Ed., 2012, 51, (41), 10236 LINK http://dx.doi.org/10.1002/anie.201203269
    [Google Scholar]
  56. R. Rossi, F. Bellina, M. Lessi, C. Manzini, , Adv. Synth. Catal., 2014, 356, (1), 17 LINK http://dx.doi.org/10.1002/adsc.201300922
    [Google Scholar]
  57. L. Ackermann, , Chem. Rev., 2011, 111, (2), 1315 LINK http://dx.doi.org/10.1021/cr100412j
    [Google Scholar]
  58. S. I. Gorelsky, D. Lapointe, K. Fagnou, , J. Am. Chem. Soc., 2008, 130, (33), 10848 LINK http://dx.doi.org/10.1021/ja802533u
    [Google Scholar]
  59. S. I. Gorelsky, D. Lapointe, K. Fagnou, , J. Org. Chem., 2012, 77, (1), 658 LINK http://dx.doi.org/10.1021/jo202342q
    [Google Scholar]
  60. Y. Tan, F. Barrios-Landeros, J. F. Hartwig, , J. Am. Chem. Soc., 2012, 134, (8), 3683 LINK http://dx.doi.org/10.1021/ja2122156
    [Google Scholar]
  61. Y. Tan, J. F. Hartwig, , J. Am. Chem. Soc., 2011, 133, (10), 3308 LINK http://dx.doi.org/10.1021/ja1113936
    [Google Scholar]
  62. J. K. Nørskov, T. Bligaard, J. Rossmeisl, C. H. Christensen, , Nature Chem., 2009, 1, (1), 37 LINK http://dx.doi.org/10.1038/nchem.121
    [Google Scholar]
  63. F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjaer, J. S. Hummelshøj, S. Dahl, I. Chorkendorff, J. K. Nørskov, , Nature Chem., 2014, 6, (4), 320 LINK http://dx.doi.org/10.1038/nchem.1873
    [Google Scholar]
  64. N. Acerbi, S. C. E. Tsang, G. Jones, S. Golunski, P. Collier, , Angew. Chem. Int. Ed, 2013, 52, (30), 7737 LINK http://dx.doi.org/10.1002/anie.201300130
    [Google Scholar]
  65. O. R. Inderwildi, S. J. Jenkins, , Chem. Soc. Rev., 2008, 37, (10), 2274 LINK http://dx.doi.org/10.1039/B719149A
    [Google Scholar]
  66. G. Jones, J. G. Jakobsen, S. S. Shim, J. Kleis, M. P. Andersson, J. Rossmeisl, F. Abild-Pedersen, T. Bligaard, S. Helveg, B. Hinnemann, J. R. Rostrup-Nielsen, I. Chorkendorff, J. Sehested, J. K. Nørskov, , J. Catal., 2008, 259, (1), 147 LINK http://dx.doi.org/10.1016/j.jcat.2008.08.003
    [Google Scholar]
  67. F. Abild-Pedersen, O. Lytken, J. Engbæk, G. Nielsen, Ib Chorkendorff, J. K. Nørskov, , Surf. Sci., 2005, 590, (2–3), 127 LINK http://dx.doi.org/10.1016/j.susc.2005.05.057
    [Google Scholar]
  68. G. Jones, , ‘Preliminary results for S desorption from Ni{111}’, Internal Report, Johnson Matthey Plc, Sonning Common, UK, 2010
    [Google Scholar]
  69. G. McCarty, H. Wise, , J. Chem. Phys., 1980, 72, (12), 6332 LINK http://dx.doi.org/10.1063/1.439156
    [Google Scholar]
  70. T. R. Munter, D. D. Landis, F. Abild-Pedersen, G. Jones, S. Wang, T. Bligaard, , Comput. Sci. Disc., 2009, 2, 015006 LINK http://dx.doi.org/10.1088/1749-4699/2/1/015006
    [Google Scholar]
  71. S. Saadi, B. Hinnemann, C. C. Appel, S. Helveg, F Abild-Pedersen, J. K. Nørskov, , Surf. Sci., 2011, 605, (5–6), 582 LINK http://dx.doi.org/10.1016/j.susc.2010.12.023
    [Google Scholar]
  72. S. Saadi, F. Abild-Pedersen, S. Helveg, J. Sehested, B. Hinnemann, C. C. Appel, J. K. Nørskov, , J. Phys. Chem. C, 2010, 114, (25), 11221 LINK http://dx.doi.org/10.1021/jp1033596
    [Google Scholar]
  73. S. Helveg, C. López-Cartes, J. Sehested, P. L. Hansen, B. S. Clausen, J. R. Rostrup-Nielsen, F. Abild-Pedersen, J. K. Nørskov, , Nature, 2004, 427, (6973), 426 LINK http://dx.doi.org/10.1038/nature02278
    [Google Scholar]
  74. E. H. Stitt, M. J. Watson, L. Gladden, J. McGregor, , World Patent 2010/140005
    [Google Scholar]
  75. A. Ukpong, G. Jones, , Ab initio Insight into the Catalytic Dehydrogenation of Propane to Propene over Defective Graphene’, submitted
    [Google Scholar]
  76. J. Zhu, J. G. van Ommen, L. Lefferts, , J. Catal., 2004, 225, (4), 388 LINK http://dx.doi.org/10.1016/j.jcat.2004.04.015
    [Google Scholar]
  77. J. Zhu, J. G. van Ommen, H. J. M. Bouwmeester, L. Lefferts, , J. Catal., 2005, 233, (2), 434 LINK http://dx.doi.org/10.1016/j.jcat.2005.05.012
    [Google Scholar]
  78. C. S. Cooper, R. J. Oldman, C. R. A. Catlow, , Chem. Comm., 2015, 51, 5856 LINK http://dx.doi.org/10.1039/C4CC09010A
    [Google Scholar]
  79. X. Xia, R. J. Oldman, C. R. A. Catlow, , J. Mater. Chem., 2012, 22, (17), 8594 LINK http://dx.doi.org/10.1039/c2jm16604f
    [Google Scholar]
  80. M. Anpo, M. Che, B. Fubini, E. Garrone, E. Giamello, M. C. Paganini, , Top. Catal., 1999, 8, (3–4), 189 LINK http://dx.doi.org/10.1023/A:1019117328935
    [Google Scholar]
  81. G. Mills, H. Jónsson, G. K. Schenter, , Surf. Sci., 1995, 324, (2–3), 305 LINK http://dx.doi.org/10.1016/0039-6028(94)00731-4
    [Google Scholar]
  82. ‘The Fuel Cell Today Industry Review 2011’, Johnson Matthey Plc, Royston, UK, 2011 LINK http://fuelcelltoday.com/analysis/industry-review/2011/the-industry-review-2011
    [Google Scholar]
  83. ‘Technical Plan — Fuel Cells’, Multi-Year Research, Development and Demonstration Plan, US Government, Washington, DC, USA: http://energy.gov/sites/prod/files/2014/12/f19/fcto_myrdd_fuel_cells.pdf (Accessed on 2nd April 2015)
    [Google Scholar]
  84. J. Greeley, J. K. Nørskov, , J. Phys. Chem. C, 2009, 113, (12), 4932 LINK http://dx.doi.org/10.1021/jp808945y
    [Google Scholar]
  85. J. K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J. R. Kitchin, T. Bligaard, H. Jónsson, , J. Phys. Chem. B, 2004, 108, (46), 17886 LINK http://dx.doi.org/10.1021/jp047349j
    [Google Scholar]
  86. V. Stamenković, T. J. Schmidt, P. N. Ross, N. M. Marković, , J. Phys. Chem. B, 2002, 106, (46), 11970 LINK http://dx.doi.org/10.1021/jp021182h
    [Google Scholar]
  87. I. E. L. Stephens, A. S. Bondarenko, F. J. Perez-Alonso, F. Calle-Vallejo, L. Bech, T. P. Johansson, A. K. Jepsen, R. Frydendal, B. P. Knudsen, J. Rossmeisl, Ib Chorkendorff, , J. Am. Chem. Soc., 2011, 133, (14), 5485 LINK http://dx.doi.org/10.1021/ja111690g
    [Google Scholar]
  88. V. Stamenkovic, B. S. Mun, K. J. J. Mayrhofer, P. N. Ross, N. M. Markovic, J. Rossmeisl, J. Greeley, J. K. Nørskov, , Angew. Chem. Int. Ed., 2006, 45, (18), 2897 LINK http://dx.doi.org/10.1002/anie.200504386
    [Google Scholar]
  89. Y. Xu, A. V. Ruban, M. Mavrikakis, , J. Am. Chem. Soc., 2004, 126, (14), 4717 LINK http://dx.doi.org/10.1021/ja031701+
    [Google Scholar]
  90. V. Viswanathan, H. A. Hansen, J. Rossmeisl, J. K. Nørskov, , J. Phys. Chem. Lett., 2012, 3, (20), 2948 LINK http://dx.doi.org/10.1021/jz301476w
    [Google Scholar]
  91. P. Sabatier, , Ber. Deut. Chem. Gesell., 1911, 44, (3), 1984 LINK http://dx.doi.org/10.1002/cber.19110440303
    [Google Scholar]
  92. T. Bligaard, J. K. Nørskov, S. Dahl, J. Matthiesen, C. H. Christensen, J. Sehested, , J. Catal., 2004, 224, (1), 206 LINK http://dx.doi.org/10.1016/j.jcat.2004.02.034
    [Google Scholar]
  93. Y. Ma, P. B. Balbuena, , Surf. Sci., 2008, 602, (1), 107 LINK http://dx.doi.org/10.1016/j.susc.2007.09.052
    [Google Scholar]
  94. G. E. Ramirez-Caballero, P. B. Balbuena, , Chem. Phys. Lett., 2008, 456, (1–3), 64 LINK http://dx.doi.org/10.1016/j.cplett.2008.03.008
    [Google Scholar]
  95. J. S. Hummelshøj, F. Abild-Pedersen, F. Studt, T. Bligaard, J. K. Nørskov, , Angew. Chem. Int. Ed., 2012, 51, (1), 272 LINK http://dx.doi.org/10.1002/anie.201107947
    [Google Scholar]
  96. J. Yates, G. H. Spikes, G. Jones, , Phys. Chem. Chem. Phys., 2015, 17, (6), 4250 LINK http://dx.doi.org/10.1039/C4CP04974H
    [Google Scholar]
  97. D. W. Fickel, R. F. Lobo, , J. Phys. Chem. C, 2010, 114, (3), 1633 LINK http://dx.doi.org/10.1021/jp9105025
    [Google Scholar]
  98. A. Godiksen, F. N. Stappen, P. N. R. Vennestrøm, F. Giordanino, S. B. Rasmussen, L. F. Lundegaard, S. Mossin, , J. Phys. Chem. C, 2014, 118, (40), 23126 LINK http://dx.doi.org/10.1021/jp5065616
    [Google Scholar]
  99. F. Gao, E. D. Walter, M. Kollar, Y. Wang, J. Szanyi, C. H. F. Peden, , J. Catal., 2014, 319, 1 LINK http://dx.doi.org/10.1016/j.jcat.2014.08.010
    [Google Scholar]
  100. F. Gao, E. D. Walter, E. M. Karp, J. Luo, R. G. Tonkyn, J. H. Kwak, J. Szanyi, C. H. F. Peden, , J. Catal., 2013, 300, 20 LINK http://dx.doi.org/10.1016/j.jcat.2012.12.020
    [Google Scholar]
  101. E. Borfecchia, K. A. Lomachenko, F. Giordanino, H. Falsig, P. Beato, A. V. Soldatov, S. Bordiga, C. Lamberti, , Chem. Sci., 2015, 6, (1), 548 LINK http://dx.doi.org/10.1039/C4SC02907K
    [Google Scholar]
  102. U. Deka, I. Lezcano-Gonzalez, B. M. Weckhuysen, A. M. Beale, , ACS Catal., 2013, 3, (3), 413 LINK http://dx.doi.org/10.1021/cs300794s
    [Google Scholar]
  103. S. T. Korhonen, D. W. Fickel, R. F. Lobo, B. M. Weckhuysen, A. M. Beale, , Chem. Commun., 2011, 47, (2), 800 LINK http://dx.doi.org/10.1039/C0CC04218H
    [Google Scholar]
  104. Z.-P. Liu, S. J. Jenkins, D. A. King, , Phys. Rev. Lett., 2005, 94, (19–20), 196102 LINK http://dx.doi.org/10.1103/PhysRevLett.94.196102
    [Google Scholar]
  105. L. J. Bennett, G. Jones, , Phys. Chem. Chem. Phys., 2014, 16, (39), 21032 LINK http://dx.doi.org/10.1039/C4CP00928B
    [Google Scholar]
  106. M. K. Bruska, I. Czekaj, B. Delley, J. Mantzaras, A. Wokaun, , Phys. Chem. Chem. Phys., 2011, 13, (35), 15947 LINK http://dx.doi.org/10.1039/C1CP20923J
    [Google Scholar]
  107. J. Waser, H. A. Levy, S. W. Peterson, , Acta Cryst., 1953, 6, (7), 661 LINK http://dx.doi.org/10.1107/S0365110X53001800
    [Google Scholar]
  108. J. Kleis, J. Greeley, N. A. Romero, V. A. Morozov, H. Falsig, A. H. Larsen, H. Lu, J. J. Mortensen, M. Dułak, K. S. Thygesen, J. K. Nørskov, K. W. Jacobsen, , Catal. Lett., 2011, 141, (8), 1067 LINK http://dx.doi.org/10.1007/s10562-011-0632-0
    [Google Scholar]
  109. L. Li, A. H. Larsen, A. H. Romero, V. A. Morozov, C. Glinsvad, F. Abild-Pedersen, J. Greeley, K. W. Jacobsen, J. K. Nørskov, , J. Phys. Chem. Lett., 2013, 4, (1), 222 LINK http://dx.doi.org/10.1021/jz3018286
    [Google Scholar]
  110. A. H. Larsen, , ‘Efficient Electronic Structure Methods Applied to Metal Nanoparticles’, PhD Thesis, Department of Physics, Technical University of Denmark, 2011 LINK http://orbit.dtu.dk/fedora/objects/orbit:115859/datastreams/file_50692e71-c3c2-47ef-ad2d-d325561647e3/content
    [Google Scholar]
  111. T. Jiang, D. J. Mowbray, S. Dobrin, H. Falsig, B. Hvolbæk, T. Bligaard, J. K. Nørskov, , J. Phys. Chem. C, 2009, 113, (24), 10548 LINK http://dx.doi.org/10.1021/jp811185g
    [Google Scholar]
  112. H. Falsig, J. Shen, T. S. Khan, W. Guo, G. Jones, S. Dahl, T. Bligaard, , Top. Catal., 2014, 57, (1–4), 80 LINK http://dx.doi.org/10.1007/s11244-013-0164-5
    [Google Scholar]
  113. C. Verdozzi, D. R. Jennison, P. A. Schultz, M. P. Sears, , Phys. Rev. Lett., 1999, 82, (4), 799 LINK http://dx.doi.org/10.1103/PhysRevLett.82.799
    [Google Scholar]
  114. Z. Łodziana, J. K. Nørskov, , J. Chem. Phys., 2001, 115, (24), 11261 LINK http://dx.doi.org/10.1063/1.1421107
    [Google Scholar]
  115. J. R. B. Gomes, Z. Lodziana, F. Illas, , J. Phys. Chem. B, 2003, 107, (26), 6411 LINK http://dx.doi.org/10.1021/jp022520h
    [Google Scholar]
  116. M. C. Valero, P. Raybaud, P. Sautet, , J. Phys. Chem. B, 2006, 110, (4), 1759 LINK http://dx.doi.org/10.1021/jp0554240
    [Google Scholar]
  117. R. Grau-Crespo, N. C. Hernández, J. F. Sanz, N. H. de Leeuw, , J. Phys. Chem. C, 2007, 111, (28), 10448 LINK http://dx.doi.org/10.1021/jp0704057
    [Google Scholar]
  118. C. Chizallet, P. Raybaud, , Catal. Sci. Technol., 2014, 4, (9), 2797 LINK http://dx.doi.org/10.1039/C3CY00965C
    [Google Scholar]
  119. L. G. V. Briquet, C. R. A. Catlow, S. A. French, , J. Phys. Chem. C, 2008, 112, (48), 18948 LINK http://dx.doi.org/10.1021/jp803540r
    [Google Scholar]
  120. L. G. V. Briquet, C. R. A. Catlow, S. A. French, , J. Phys. Chem. C, 2009, 113, (38), 16747 LINK http://dx.doi.org/10.1021/jp904217b
    [Google Scholar]
  121. L. G. V. Briquet, C. R. A. Catlow, S. A. French, , J. Phys. Chem. C, 2010, 114, (50), 22155 LINK http://dx.doi.org/10.1021/jp101710v
    [Google Scholar]
  122. S. W. Hoh, L. Thomas, G. Jones, D. J. Willock, , Res. Chem. Intermediat., 2015, doi: 10.1007/s11164-015-1984-7 LINK http://dx.doi.org/10.1007/s11164-015-1984-7
    [Google Scholar]
  123. S. W. Hoh, , ‘Oxidation Catalysis Using Transition Metals and Rare Earth Oxides’, PhD Thesis, School of Chemistry, Cardiff University, UK, 2014 LINK http://orca.cf.ac.uk/69756/1/Full%20Thesis%20SWHoh_corrections_21Jan2015.pdf
    [Google Scholar]
  124. A. P. Sutton, J. Chen, , Phil. Mag. Lett., 1990, 61, (3), 139 LINK http://dx.doi.org/10.1080/09500839008206493
    [Google Scholar]
  125. K. W. Jacobsen, J. K. Norskov, M. J. Puska, , Phys. Rev. B, 1987, 35, (14), 7423 LINK http://dx.doi.org/10.1103/PhysRevB.35.7423
    [Google Scholar]
  126. J. J. Mortensen, L. B. Hansen, K. W. Jacobsen, , Phys. Rev. B, 2005, 71, (3), 035109 LINK http://dx.doi.org/10.1103/PhysRevB.71.035109
    [Google Scholar]
  127. C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, M. C. Payne, , J. Chem. Phys., 2005, 122, (8), 084119 LINK http://dx.doi.org/10.1063/1.1839852
    [Google Scholar]
  128. P. Koskinen, V. Mäkinen, , Comput. Mater. Sci., 2009, 47, (1), 237 LINK http://dx.doi.org/10.1016/j.commatsci.2009.07.013
    [Google Scholar]
  129. Á. Ruiz-Serrano, C.-K. Skylaris, , J. Chem. Phys., 2013, 139, (5), 054107 LINK http://dx.doi.org/10.1063/1.4817001
    [Google Scholar]
  130. M. H. Chuma, H. R. Chauke, G. Jones, P. E. Ngoepe, , ‘Parameterization and Validation of Pd and Pd Nanoclusters Using SCC-DFTB’, in “Proceedings of SAIP2013: the 58th Annual Conference of the South African Institute of Physics”, eds. R. Botha, T. Jili, , The 58th Annual Conference of the South African Institute of Physics, University of Zululand, South Africa, 8th–12th July, 2013, pp. 812
    [Google Scholar]
  131. L. Jones, K. E. MacArthur, V. T. Fauske, A. T. J. van Helvoot, P. D. Nellist, , Nano Lett., 2014, 14, (11), 6336 LINK http://dx.doi.org/10.1021/nl502762m
    [Google Scholar]
  132. R. Price, T. Erlap-Erden, E. Crumlin, S. Garcia, S. Rani, R. Smith, G. Jones, L. Deacon, C. Euarusakul, G. Held, , ‘The Partial Oxidation of Methane with Catalytic Pd/Al2O3 Nanoparticles, Studied in-situ by Near Ambient-Pressure X-Ray Photoelectron Spectroscopy’, submitted
    [Google Scholar]
  133. V. Novák, P. Kočí, F. Štěpánek, M. Marek, , Ind. Eng. Chem. Res., 2011, 50, (23), 12904 LINK http://dx.doi.org/10.1021/ie2003347
    [Google Scholar]
  134. V. Novák, P. Kočí, F. Štěpánek, M. Kubíček, M. Marek, , Comput. Chem. Eng., 2011, 35, (5), 964 LINK http://dx.doi.org/10.1016/j.compchemeng.2011.01.039
    [Google Scholar]
  135. J. Kosek, F. Štěpánek, M. Marek, , Adv. Chem. Eng., 2005, 30, 137 LINK http://dx.doi.org/10.1016/S0065-2377(05)30003-2
    [Google Scholar]
  136. P. Kočí, V. Novák, F. Štěpánek, M. Marek, M. Kubíček, , Chem. Eng. Sci., 2010, 65, (1), 412 LINK http://dx.doi.org/10.1016/j.ces.2009.06.068
    [Google Scholar]
  137. V. Novák, F. Štěpánek, P. Kočí, M. Marek, M. Kubíček, , Chem. Eng. Sci., 2010, 65, (7), 2352 LINK http://dx.doi.org/10.1016/j.ces.2009.09.009
    [Google Scholar]
  138. P. Kočí, F. Štěpánek, M. Kubíček, M. Marek, , Chem. Eng. Sci., 2006, 61, (10), 3240 LINK http://dx.doi.org/10.1016/j.ces.2005.12.008
    [Google Scholar]
  139. M. Marek, Z. Grof, P. Kocí, M. Kohout, J. Kosek, F. Štepánek, , J. Chem. Eng. Jpn, 2007, 40, (11), 879 LINK http://dx.doi.org/10.1252/jcej.07WE044
    [Google Scholar]
  140. F. Štěpánek, M. Marek, J. Hanika, P. M. Adler, , Catal. Today, 2001, 66, (2–4), 249 LINK http://dx.doi.org/10.1016/S0920-5861(00)00628-3
    [Google Scholar]
  141. P. Kočí, F. Štěpánek, M. Kubíček, M. Marek, , Chem. Eng. Sci., 2007, 62, (18–20), 5380 LINK http://dx.doi.org/10.1016/j.ces.2006.12.033
    [Google Scholar]
  142. P. Kočí, F. Štěpánek, M. Kubíček, M. Marek, , Mol. Simul., 2007, 33, (4–5), 369 LINK http://dx.doi.org/10.1080/08927020601156426
    [Google Scholar]
  143. V. Novák, P. Kočí, M. Marek, F. Štěpánek, P. Blanco-García, G. Jones, , Catal. Today, 2012, 188, (1), 62 LINK http://dx.doi.org/10.1016/j.cattod.2012.03.049
    [Google Scholar]
  144. M. Dudák, V. Novák, P. Kočí, M. Marek, P. Blanco-García, G. Jones, , Appl. Catal. B: Environ., 2014, 150–151, 446 LINK http://dx.doi.org/10.1016/j.apcatb.2013.12.018
    [Google Scholar]
  145. R. H. Davies, A. T. Dinsdale, J. A. Gisby, J. A. J. Robinson, S. M. Martin, , Calphad, 2002, 26, (2), 229 LINK http://dx.doi.org/10.1016/S0364-5916(02)00036-6
    [Google Scholar]
  146. gPROMS,, Process Systems Enterprise Ltd, London, UK, 1997–2014: www.psenterprise.com/gproms (Accessed on 2nd April 2015)
/content/journals/10.1595/205651315X687975
Loading
/content/journals/10.1595/205651315X687975
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test