Skip to content
1887
Volume 59, Issue 3
  • ISSN: 2056-5135
  • oa Temperature Dependent Heat Transfer Performance of Multi-walled Carbon Nanotube-based Aqueous Nanofluids at Very Low Particle Loadings

    Investigating the mechanism of thermal conductivity enhancement

  • Authors: By Meher Wan1, Raja Ram Yadav2, Giridhar Mishra3, Devraj Singh3 and Bipin Joshi4
  • Affiliations: 1 Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur-721302, India 2 Department of Physics, University of Allahabad, Allahabad-211002, India 3 Department of Applied Physics, Amity School of Engineering and Technology, An affiliated institute of Guru Gobind Singh Indraprastha University, Bijwasan, New Delhi-110061, India 4 Department of Science and Technology, Technology Bhavan, New Mehrauli Road, New Delhi-110016, India
    *Email: [email protected]
  • Source: Johnson Matthey Technology Review, Volume 59, Issue 3, Apr 2015, p. 199 - 206
  • DOI: https://doi.org/10.1595/205651315X688163

Abstract

Aqueous suspensions of multi-walled carbon nanotubes (MWCNTs + deionised water) have been synthesised. Carbon nanotubes (CNTs) were derived by chemical vapour deposition (CVD). Transmission electron microscopy (TEM) measurements show the formation of MWCNTs. Three samples of CNT-based aqueous nanofluids having MWCNT concentrations of 0.01 vol%, 0.03 vol% and 0.05 vol% were prepared with the help of ultrasonic irradiation. A very small amount of sodium dodecyl sulfate (SDS) was used as a surfactant to minimise the agglomeration of the MWCNTs. An effective enhancement in thermal conductivity was observed at different temperatures. The obtained results are explained with percolation theory.

This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/
Loading

Article metrics loading...

/content/journals/10.1595/205651315X688163
2015-04-01
2025-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/59/3/JMTR-59-3-Singh.html?itemId=/content/journals/10.1595/205651315X688163&mimeType=html&fmt=ahah

References

  1. D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, L. Shi, , Appl. Phys. Rev., 2014, 1, (1), 011305 LINK http://dx.doi.org/10.1063/1.4832615
    [Google Scholar]
  2. Z. Ling, Z. Zhang, G. Shi, X. Fang, L. Wang, X. Gao, Y. Fang, T. Xu, S. Wang, X. Liu, , Renew. Sustain. Energy Rev., 2014, 31, 427 LINK http://dx.doi.org/10.1016/j.rser.2013.12.017
    [Google Scholar]
  3. T. Dixit, I. Ghosh, , Renew. Sustain. Energy Rev., 2015, 41, 1298 LINK http://dx.doi.org/10.1016/j.rser.2014.09.024
    [Google Scholar]
  4. R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi, , J. Appl. Phys., 2013, 113, (1), 011301 LINK http://dx.doi.org/10.1063/1.4754271
    [Google Scholar]
  5. R. Saidur, K.Y. Leong, H. A. Mohammad, , Renew. Sustain. Energy Rev., 2011, 15, (3), 1646 LINK http://dx.doi.org/10.1016/j.rser.2010.11.035
    [Google Scholar]
  6. S. Özerinç, S. Kakaç, A. G. Yazıcıoğlu, , Microfluid. Nanofluid., 2010, 8, (2), 145 LINK http://dx.doi.org/10.1007/s10404-009-0524-4
    [Google Scholar]
  7. S.-H. Lee, S. P. Jang, , Int. J. Heat Mass Transfer, 2013, 67, 930 LINK http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.08.094
    [Google Scholar]
  8. O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, S. Wongwises, , Int. J. Heat Mass Transfer, 2013, 57, (2), 582 LINK http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.10.037
    [Google Scholar]
  9. Z. Haddad, C. Abid, H. F. Oztop, A. Mataoui, , Int. J. Therm. Sci., 2014, 76, 168 LINK http://dx.doi.org/10.1016/j.ijthermalsci.2013.08.010
    [Google Scholar]
  10. C. D. S. Brites, P. P. Lima, N. J. O. Silva, A. Millán, V. S. Amaral, F. Palacio, L. D. Carlos, , Nanoscale, 2013, 5, (16), 7572 LINK http://dx.doi.org/10.1039/C3NR02335D
    [Google Scholar]
  11. H. Maruyama, R. Kariya, F. Arai, , Appl. Phys. Lett., 2013, 103, (16), 161905 LINK http://dx.doi.org/10.1063/1.4824757
    [Google Scholar]
  12. S. Halelfadl, T. Maré, P. Estellé, , Exp. Therm. Fluid Sci., 2014, 53, 104 LINK http://dx.doi.org/10.1016/j.expthermflusci.2013.11.010
    [Google Scholar]
  13. S. M. S. Murshed, C. A. Nieto de Castro, , Renew. Sustain. Energy Rev., 2014, 37, 155 LINK http://dx.doi.org/10.1016/j.rser.2014.05.017
    [Google Scholar]
  14. P. Estellé, S. Halelfadl, T. Maré, , Int. Commun. Heat Mass, 2014, 57, 8 LINK http://dx.doi.org/10.1016/j.icheatmasstransfer.2014.07.012
    [Google Scholar]
  15. Y. Ding, H. Alias, D. Wen, R. A. Williams, , Int. J. Heat Mass Transfer, 2006, 49, (1–2), 240 LINK http://dx.doi.org/10.1016/j.ijheatmasstransfer.2005.07.009
    [Google Scholar]
  16. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke, , Appl. Phys. Lett., 2001, 79, (14), 2252 LINK http://dx.doi.org/10.1063/1.1408272
    [Google Scholar]
  17. J. Sengupta, A. Jana, N. D. P. Singh, C. Mitra, C. Jacob, , Nanotechnology, 2010, 21, (41), 415605 LINK http://dx.doi.org/10.1088/0957-4484/21/41/415605
    [Google Scholar]
  18. S. Jana, A. Salehi-Khojin, W.-H. Zhong, , Thermochim. Acta, 2007, 462, (1–2), 45 LINK http://dx.doi.org/10.1016/j.tca.2007.06.009
    [Google Scholar]
  19. S. E. Gustafsson, , Rev. Sci. Instrum., 1991, 62, (3), 797 LINK http://dx.doi.org/10.1063/1.1142087
    [Google Scholar]
  20. N. N. V. Sastry, A. Bhunia, T. Sundararajan, S. K. Das, , Nanotechnology, 2008, 19, (5), 055704 LINK http://dx.doi.org/10.1088/0957-4484/19/05/055704
    [Google Scholar]
  21. B. Lamas, B. Abreu, A. Fonseca, N. Martins, M. Oliveira, , Int. J. Therm. Sci., 2014, 78, 65 LINK http://dx.doi.org/10.1016/j.ijthermalsci.2013.11.017
    [Google Scholar]
  22. W. Yu, S. U. S. Choi, , J. Nanopart. Res., 2004, 6, (4), 355 LINK http://dx.doi.org/10.1007/s11051-004-2601-7
    [Google Scholar]
  23. L. Xue, P. Keblinski, S. R. Phillpot, S. U.-S. Choi, J. A. Eastman, , Int. J. Heat Mass Transfer, 2004, 47, (19–20), 4277 LINK http://dx.doi.org/10.1016/j.ijheatmasstransfer.2004.05.016
    [Google Scholar]
  24. M. J. Assael, I. N. Metaxa, K. Kakosimos, D. Constantinou, , Int. J. Thermophys., 2006, 27, (4), 999 LINK http://dx.doi.org/10.1007/s10765-006-0078-6
    [Google Scholar]
  25. M. Foygel, R. D. Morris, D. Anez, S. French, V. L. Sobolev, , Phys. Rev. B, 2005, 71, (10), 104201 LINK http://dx.doi.org/10.1103/PhysRevB.71.104201
    [Google Scholar]
  26. M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun, A. T. Johnson, J. E. Fischer, , Appl. Phys. Lett., 2002, 80, (15), 2767 LINK http://dx.doi.org/10.1063/1.1469696
    [Google Scholar]
  27. R. Prasher, P. Bhattacharya, P. E. Phelan, , Phys. Rev. Lett., 2005, 94, (2), 025901 LINK http://dx.doi.org/10.1103/PhysRevLett.94.025901
    [Google Scholar]
  28. T. D. Taylor, , Phys. Fluids, 1963, 6, 987 LINK http://dx.doi.org/10.1063/1.2746803
    [Google Scholar]
/content/journals/10.1595/205651315X688163
Loading
/content/journals/10.1595/205651315X688163
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test