Skip to content
1887
Volume 60, Issue 1
  • ISSN: 2056-5135

Abstract

Oxidation technologies and advanced oxidation processes (AOPs) have been regarded as a competitive method for the remediation of persistent pollutants in water. Among AOPs, the use of photocatalysis has particularly attracted interest in recent decades. However, attempts to improve the efficiency of photocatalysts in terms of both enhanced activity and applicability under visible light have proved challenging. In this context, there is a need for processes able to achieve the synthesis of innovative nanostructured materials meeting these criteria with reproducibility and scalability in mind. The aim of this review is to focus on two themes of interest, namely noble metal based catalysts and spray pyrolysis (SP) processes. Several alternative SP methods have been reported and these will be described. The emphasis is placed on the recent use of SP for the synthesis of noble metal/semiconductor nanomaterials and their enhanced photocatalytic activity. Recent innovations in the design of SP processes and their potential to further improve noble metal-based photocatalysts are also examined. Finally, the possibility of using SP processes as a flexible tool to achieve immobilisation of photocatalysts onto substrates and in reactor for real water treatment application is considered.

Loading

Article metrics loading...

/content/journals/10.1595/205651315X689829
2016-01-01
2024-11-13
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/60/1/JMTR-60-1-Pelletier.html?itemId=/content/journals/10.1595/205651315X689829&mimeType=html&fmt=ahah

References

  1. M. N. Chong, B. Jin, C. W. K. Chow, C. Saint, Water Res., 2010, 44, (10), 2997 LINK http://dx.doi.org/10.1016/j.watres.2010.02.039 [Google Scholar]
  2. K. Nagaveni, M. S. Hegde, G. Madras, J. Phys. Chem. B, 2004, 108, (52), 20204 LINK http://dx.doi.org/10.1021/jp047917v [Google Scholar]
  3. L. G. Devi, R. Kavitha, Appl. Catal. B: Environ., 2013, 140–141, 559 LINK http://dx.doi.org/10.1016/j.apcatb.2013.04.035 [Google Scholar]
  4. Y. Cho, W. Choi, C.-H. Lee, T. Hyeon, H.-I. Lee, Environ. Sci. Technol., 2001, 35, (5), 966 LINK http://dx.doi.org/10.1021/es001245e [Google Scholar]
  5. R. Leary, A. Westwood, Carbon, 2011, 49, (3), 741 LINK http://dx.doi.org/10.1016/j.carbon.2010.10.010 [Google Scholar]
  6. G.-S. Li, D.-Q. Zhang, J. C. Yu, Environ. Sci. Technol., 2009, 43, (18), 7079 LINK http://dx.doi.org/10.1021/es9011993 [Google Scholar]
  7. S. Balachandran, N. Prakash, K. Thirumalai, M. Muruganandham, M. Sillanpää, M. Swaminathan, Ind. Eng. Chem. Res., 2014, 53, (20), 8346 LINK http://dx.doi.org/10.1021/ie404287m [Google Scholar]
  8. X. Zhang, Y. L. Chen, R.-S. Liu, D. P. Tsai, Rep. Prog. Phys., 2013, 76, 046401 LINK http://dx.doi.org/10.1088/0034-4885/76/4/046401 [Google Scholar]
  9. J. Yu, L. Yue, S. Liu, B. Huang, X. Zhang, J. Colloid Interface Sci., 2009, 334, (1), 58 LINK http://dx.doi.org/10.1016/j.jcis.2009.03.034 [Google Scholar]
  10. S. C. Chan, M. A. Barteau, Langmuir, 2005, 21, (12), 5588 LINK http://dx.doi.org/10.1021/la046887k [Google Scholar]
  11. L. Delannoy, N. E. Hassan, A. Musi, N. N. L. To, J.-M. Krafft, C. Louis, J. Phys. Chem. B, 2006, 110, (45), 22471 LINK http://dx.doi.org/10.1021/jp062130l [Google Scholar]
  12. M. C. Hidalgo, M. Maicu, J. A. Navío, G. Colón, J. Phys. Chem. C, 2009, 113, (29), 12840 LINK http://dx.doi.org/10.1021/jp903432p [Google Scholar]
  13. J. Fang, S.-W. Cao, Z. Wang, M. M. Shahjamali, S. C. J. Loo, J. Barber, C. Xue, Int. J. Hydrogen Energy, 2012, 37, (23), 17853 LINK http://dx.doi.org/10.1016/j.ijhydene.2012.09.023 [Google Scholar]
  14. W.-C. Li, M. Comotti, F. Schüth , J. Catal., 2006, 237, (1), 190 LINK http://dx.doi.org/10.1016/j.jcat.2005.11.006 [Google Scholar]
  15. W. Y. Teoh, Materials, 2013, 6, (8), 3194 LINK http://dx.doi.org/10.3390/ma6083194 [Google Scholar]
  16. W. Y. Teoh, R. Amal, L. Mädler, Nanoscale, 2010, 2, (8), 1324 LINK http://dx.doi.org/10.1039/c0nr00017e [Google Scholar]
  17. S. E. Pratsinis, AIChE J., 2010, 56, (12), 3028 LINK http://dx.doi.org/10.1002/aic.12478 [Google Scholar]
  18. R. Mueller, L. Mädler, S. E. Pratsinis, Chem. Eng. Sci., 2003, 58, (10), 1969 LINK http://dx.doi.org/10.1016/S0009-2509(03)00022-8 [Google Scholar]
  19. R. Mueller, R. Jossen, S. E. Pratsinis, M. Watson, M. K. Akhtar, J. Am. Ceram. Soc., 2004, 87, (2), 197 LINK http://dx.doi.org/10.1111/j.1551-2916.2004.00197.x [Google Scholar]
  20. K. Kaneko, W.-J. Moon, K. Inoke, Z. Horita, S. Ohara, T. Adschiri, H. Abe, M. Naito, Mater. Sci. Eng.: A, 2005, 403, (1–2), 32 LINK http://dx.doi.org/10.1016/j.msea.2005.05.056 [Google Scholar]
  21. S. Kozhukharov, S. Tchaoushev, J. Chem. Technol. Metall., 2013, 48, (1), 111 LINK http://dl.uctm.edu/journal/node/j2013-1/15_Stefan_Kojukharov_111-117.pdf [Google Scholar]
  22. R. Strobel, A. Alfons, S. E. Pratsinis, Adv. Powder Technol., 2006, 17, (5), 457 LINK http://dx.doi.org/10.1163/156855206778440525 [Google Scholar]
  23. S. G. Kumar, L. G. Devi, J. Phys. Chem. A, 2011, 115, (46), 13211 LINK http://dx.doi.org/10.1021/jp204364a [Google Scholar]
  24. M. A. Henderson, Surf. Sci. Rep., 2011, 66, (6–7), 185 LINK http://dx.doi.org/10.1016/j.surfrep.2011.01.001 [Google Scholar]
  25. V. Subramanian, E. E. Wolf, P. V. Kamat, J. Am. Chem. Soc., 2004, 126, (15), 4943 LINK http://dx.doi.org/10.1021/ja0315199 [Google Scholar]
  26. A. L. Linsebigler, G. Lu, J. T. Yates, Chem. Rev., 1995, 95, (3), 735 LINK http://dx.doi.org/10.1021/cr00035a013 [Google Scholar]
  27. S. Sakthivel, M. V. Shankar, M. Palanichamy, B. Arabindoo, D. W. Bahnemann, V. Murugesan, Water Res., 2004, 38, (13), 3001 LINK http://dx.doi.org/10.1016/j.watres.2004.04.046 [Google Scholar]
  28. S. T. Kochuveedu, Y. H. Jang, D. H. Kim, Chem. Soc. Rev., 2013, 42, (21), 8467 LINK http://dx.doi.org/10.1039/c3cs60043b [Google Scholar]
  29. L. Mädler, W. J. Stark, S. E. Pratsinis, J. Mater. Res., 2003, 18, (1), 115 LINK http://dx.doi.org/10.1557/JMR.2003.0017 [Google Scholar]
  30. R. Strobel, S. E. Pratsinis, Platinum Metals Rev., 2009, 53, (1), 11 LINK http://www.technology.matthey.com/article/53/1/11-20/# [Google Scholar]
  31. W. Y. Teoh, L. Mädler, D. Beydoun, S. E. Pratsinis, R. Amal, Chem. Eng. Sci., 2005, 60, (21), 5852 LINK http://dx.doi.org/10.1016/j.ces.2005.05.037 [Google Scholar]
  32. W. Y. Teoh, L. Mädler, R. Amal, J. Catal., 2007, 251, (2), 271 LINK http://dx.doi.org/10.1016/j.jcat.2007.08.008 [Google Scholar]
  33. V. Tiwari, J. Jiang, V. Sethi, P. Biswas, Appl. Catal. A: Gen., 2008, 345, (2), 241 LINK http://dx.doi.org/10.1016/j.apcata.2008.05.003 [Google Scholar]
  34. I. E. Paulauskas, D. R. Modeshia, T. T. Ali, E. H. El-Mossalamy, A. Y. Obaid, S. N. Basahel, A. A. Al-Ghamdi, F. K. Sartain, Platinum Metals Rev., 2013, 57, (1), 32 LINK http://www.technology.matthey.com/article/57/1/32-43/# [Google Scholar]
  35. A. B. Haugen, I. Kumakiri, C. Simon, M.-A. Einarsrud, J. Eur. Ceram. Soc., 2011, 31, (3), 291 LINK http://dx.doi.org/10.1016/j.jeurceramsoc.2010.10.006 [Google Scholar]
  36. M. J. Height, S. E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, Appl. Catal. B: Environ., 2006, 63, (3–4), 305 LINK http://dx.doi.org/10.1016/j.apcatb.2005.10.018 [Google Scholar]
  37. C. Siriwong, C. Liewhiran, N. Wetchakun, S. Phanichphant, Characterization and Photocatalytic Activity of Pd-doped ZnO Nanoparticles Synthesized by Flame Spray Pyrolysis’, Nanoelectronics Conference, INEC 2008, 2nd IEEE International, Shanghai, China, 2008, pp. 869874 LINK http://dx.doi.org/10.1109/INEC.2008.4585621 [Google Scholar]
  38. P. Pawinrat, O. Mekasuwandumrong, J. Panpranot, Catal. Commun., 2009, 10, (10), 1380 LINK http://dx.doi.org/10.1016/j.catcom.2009.03.002 [Google Scholar]
  39. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, J. Phys. Chem. B., 2003, 107, (3), 668 LINK http://dx.doi.org/10.1021/jp026731y [Google Scholar]
  40. K. A. Willets, R. P. Van Duyne, Ann. Rev. Phys. Chem., 2007, 58, 267 LINK http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607 [Google Scholar]
  41. A. Bumajdad, M. Madkour, Phys. Chem. Chem. Phys., 2014, (16), 7146 LINK http://dx.doi.org/10.1039/c3cp54411g [Google Scholar]
  42. B. Pongthawornsakun, S.-i. Fujita, M. Arai, O. Mekasuwandumrong, J. Panpranot, Appl. Catal. A: Gen., 2013, 467, 132 LINK http://dx.doi.org/10.1016/j.apcata.2013.07.006 [Google Scholar]
  43. C. Gunawan, W. Y. Teoh, C. P. Marquis, J. Lifia, R. Amal, Small, 2009, 5, (3), 341 LINK http://dx.doi.org/10.1002/smll.200801202 [Google Scholar]
  44. C. Han, V. Likodimos, J. A. Khan, M. N. Nadagouda, J. Andersen, P. Falaras, P. Rosales-Lombardi, D. D. Dionysiou, Environ. Sci. Pollut. Res., 2014, 21, (20), 11781 LINK http://dx.doi.org/10.1007/s11356-013-2233-5 [Google Scholar]
  45. S. Kaviya, E. Prasad, RSC Advances, 2015, 5, (22), 17179 LINK http://dx.doi.org/10.1039/C4RA15293J [Google Scholar]
  46. S. Hannemann, J.-D. Grunwaldt, F. Krumeich, P. Kappen, A. Baiker, Appl. Surf. Sci., 2006, 252, (22), 7862 LINK http://dx.doi.org/10.1016/j.apsusc.2005.09.065 [Google Scholar]
  47. G. A. Sotiriou, G. D. Etterlin, A. Spyrogianni, F. Krumeich, J.-C. Leroux, S. E. Pratsinis, Chem. Commun., 2014, 50, (88), 13559 LINK http://dx.doi.org/10.1039/C4CC05297H [Google Scholar]
  48. A. Zielińska-Jurek, E. Kowalska, J. W. Sobczak, W. Lisowski, B. Ohtani, A. Zaleska, Appl. Catal. B: Environ., 2011, 101, (3–4), 504 LINK http://dx.doi.org/10.1016/j.apcatb.2010.10.022 [Google Scholar]
  49. H. Schulz, L. Mädler, R. Strobel, R. Jossen, S. E. Pratsinis, T. Johannessen, J. Mater. Res., 2005, 20, (9), 2568 LINK http://dx.doi.org/10.1557/jmr.2005.0319 [Google Scholar]
  50. J.-M. Herrmann, New J. Chem., 2012, 36, (4), 883 LINK http://dx.doi.org/10.1039/c2nj20914d [Google Scholar]
  51. F. Zuo, L. Wang, T. Wu, Z. Zhang, D. Borchardt, P. Feng, J. Am. Chem. Soc., 2010, 132, (34), 11856 LINK http://dx.doi.org/10.1021/ja103843d [Google Scholar]
  52. M. S. Hamdy, R. Amrollahi, G. Mul, ACS Catal., 2012, 2, (12), 2641 LINK http://dx.doi.org/10.1021/cs300593d [Google Scholar]
  53. Q. Zhu, Y. Peng, L. Lin, C.-M. Fan, G.-Q. Gao, R.-X. Wang, A.-W. Xu, J. Mater. Chem. A, 2014, 2, (12), 4429 LINK http://dx.doi.org/10.1039/c3ta14484d [Google Scholar]
  54. A. Naldoni, M. Allieta, S. Santangelo, M. Marelli, F. Fabbri, S. Cappelli, C. L. Bianchi, R. Psaro, V. Dal Santo , J. Am. Chem. Soc., 2012, 134, (18), 7600 LINK http://dx.doi.org/10.1021/ja3012676 [Google Scholar]
  55. Y. Yang, T. Zhang, L. Le, X. Ruan, P. Fang, C. Pan, R. Xiong, J. Shi, J. Wei, Sci. Rep., 2014, 4, 7045 LINK http://dx.doi.org/10.1038/srep07045 [Google Scholar]
  56. Y. K. Kho, W. Y. Teoh, L. Mädler, R. Amal, Chem. Eng. Sci., 2011, 66, (11), 2409 LINK http://dx.doi.org/10.1016/j.ces.2011.02.058 [Google Scholar]
  57. A. Teleki, S. E. Pratsinis, Phys. Chem. Chem. Phys., 2009, 11, (19), 3742 LINK http://dx.doi.org/10.1039/b821590a [Google Scholar]
  58. K. Wegner, S. E. Pratsinis, AIChE J., 2003, 49, (7), 1667 LINK http://dx.doi.org/10.1002/aic.690490707 [Google Scholar]
  59. J. Huo, Y. Hu, H. Jiang, C. Li, Nanoscale, 2014, 6, (15), 9078 LINK http://dx.doi.org/10.1039/C4NR00972J [Google Scholar]
  60. S. J. Tauster, Acc. Chem. Res., 1987, 20, (11), 389LINK http://dx.doi.org/10.1021/ar00143a001 [Google Scholar]
  61. K. Fujiwara, Y. Deligiannakis, C. G. Skoutelis, S. E. Pratsinis, Appl. Catal. B: Environ., 2014, 154–155, 9 LINK http://dx.doi.org/10.1016/j.apcatb.2014.01.060 [Google Scholar]
  62. M. V. Dozzi, G. L. Chiarello, E. Selli, J. Adv. Oxid. Technol., 2010, 13, (3), 305 [Google Scholar]
  63. R. Marschall, L. Wang, Catal. Today, 2014, 225, 111 LINK http://dx.doi.org/10.1016/j.cattod.2013.10.088 [Google Scholar]
  64. D. Li, H. Haneda, N. K. Labhsetwar, S. Hishita, N. Ohashi, Chem. Phys. Lett., 2005, 401, (4–6), 579 LINK http://dx.doi.org/10.1016/j.cplett.2004.11.126 [Google Scholar]
  65. D. Li, N. Ohashi, S. Hishita, T. Kolodiazhnyi, H. Haneda, J. Solid State Chem., 2005, 178, (11), 3293 LINK http://dx.doi.org/10.1016/j.jssc.2005.08.008 [Google Scholar]
  66. J. C. Yu, W. Ho, J. Yu, H. Yip, P. K. Wong, J. Zhao, Environ. Sci. Technol., 2005, 39, (4), 1175 LINK http://dx.doi.org/10.1021/es035374h [Google Scholar]
  67. H. Liu, L. Gao, J. Am. Ceram. Soc., 2004, 87, (8), 1582 LINK http://dx.doi.org/10.1111/j.1551-2916.2004.01582.x [Google Scholar]
  68. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science, 2001, 293, (5528), 269 LINK http://dx.doi.org/10.1126/science.1061051 [Google Scholar]
  69. J. Zhang, Y. Wu, M. Xing, S. A. K. Leghari, S. Sajjad, Energy Environ. Sci., 2010, 3, (6), 715 LINK http://dx.doi.org/10.1039/b927575d [Google Scholar]
  70. V. Etacheri, M. K. Seery, S. J. Hinder, S. C. Pillai, Chem. Mater., 2010, 22, (13), 3843 LINK http://dx.doi.org/10.1021/cm903260f [Google Scholar]
  71. D. Dolat, S. Mozia, B. Ohtani, A. W. Morawski, Chem. Eng. J., 2013, 225, 358 LINK http://dx.doi.org/10.1016/j.cej.2013.03.047 [Google Scholar]
  72. Y. Jiang, J. Scott, R. Amal, Appl. Catal. B: Environ., 2012, 126, 290 LINK http://dx.doi.org/10.1016/j.apcatb.2012.07.027 [Google Scholar]
  73. G. L. Chiarello, M. V. Dozzi, M. Scavini, J.-D. Grunwaldt, E. Selli, Appl. Catal. B: Environ., 2014, 160–161, 144 LINK http://dx.doi.org/10.1016/j.apcatb.2014.05.006 [Google Scholar]
  74. J. Huo, Y. Hu, H. Jiang, X. Hou, C. Li, Chem. Eng. J., 2014, 258, 163 LINK http://dx.doi.org/10.1016/j.cej.2014.07.026 [Google Scholar]
  75. R. Strobel, L. Mädler, M. Piacentini, M. Maciejewski, A. Baiker, S. E. Pratsinis, Chem. Mater., 2006, 18, (10), 2532 LINK http://dx.doi.org/10.1021/cm0600529 [Google Scholar]
  76. M. Høj, D. K. Pham, M. Brorson, L. Mädler, A. D. Jensen, J.-D. Grunwaldt, Catal. Lett., 2013, 143, (5), 386 LINK http://dx.doi.org/10.1007/s10562-013-0990-x [Google Scholar]
  77. H. K. Grossmann, T. Grieb, F. Meierhofer, M. J. Hodapp, D. Noriler, A. Gröhn, H. F. Meier, U. Fritsching, K. Wegner, L. Mädler, J. Nanopart. Res., 2015, 17, (4), 1 LINK http://dx.doi.org/10.1007/s11051-015-2975-8 [Google Scholar]
  78. A. Y. Shan, T. I. M. Ghazi, S. A. Rashid, Appl. Catal. A: Gen., 2010, 389, (1–2), 1 LINK http://dx.doi.org/10.1016/j.apcata.2010.08.053 [Google Scholar]
  79. P. Du, J. T. Carneiro, J. A. Moulijn, G. Mul, Appl. Catal. A: Gen., 2008, 334, (1–2), 119 LINK http://dx.doi.org/10.1016/j.apcata.2007.09.045 [Google Scholar]
  80. H. Dzinun, M. H. D. Othman, A. F. Ismail, M. H. Puteh, M. A. Rahman, J. Jaafar, Chem. Eng. J., 2015, 269, 255 LINK http://dx.doi.org/10.1016/j.cej.2015.01.114 [Google Scholar]
  81. M. A. Lazar, S. Varghese, S. S. Nair, Catalysts, 2012, 2, (4), 572 LINK http://dx.doi.org/10.3390/catal2040572 [Google Scholar]
  82. C. J. Brinker, M. S. Harrington, Sol. Energy Mater., 1981, 5, (2), 159 LINK http://dx.doi.org/10.1016/0165-1633(81)90027-7 [Google Scholar]
  83. G. San Vicente, A. Morales, M. T. Gutierrez, Thin Solid Films, 2001, 391, (1), 133 LINK http://dx.doi.org/10.1016/S0040-6090(01)00963-4 [Google Scholar]
  84. Q. Fan, B. McQuillin, A. K. Ray, M. L. Turner, A. B. Seddon, J. Phys. D: Appl. Phys., 2000, 33, (21), 2683 LINK http://dx.doi.org/10.1088/0022-3727/33/21/303 [Google Scholar]
  85. G. A. Battiston, R. Gerbasi, M. Porchia, A. Marigo, Thin Solid Films, 1994, 239, (2), 186 LINK http://dx.doi.org/10.1016/0040-6090(94)90849-4 [Google Scholar]
  86. D.-J. Won, C.-H. Wang, H.-K. Jang, D.-J. Choi, Appl. Phys. A, 2001, 73, (5), 595 LINK http://dx.doi.org/10.1007/s003390100804 [Google Scholar]
  87. P. Löbl, M. Huppertz, D. Mergel, Thin Solid Films, 1994, 251, (1), 72 LINK http://dx.doi.org/10.1016/0040-6090(94)90843-5 [Google Scholar]
  88. L.-J. Meng, M. P. dos Santos, Thin Solid Films, 1993, 226, (1), 22 LINK http://dx.doi.org/10.1016/0040-6090(93)90200-9 [Google Scholar]
  89. N. Martin, C. Rousselot, C. Savall, F. Palmino, Thin Solid Films, 1996, 287, (1–2), 154 LINK http://dx.doi.org/10.1016/S0040-6090(96)08782-2 [Google Scholar]
  90. K. Okimura, Surf. Coat. Technol., 2001, 135, (2–3), 286 LINK http://dx.doi.org/10.1016/S0257-8972(00)00999-3 [Google Scholar]
  91. M. P. Moret, R. Zallen, D. P. Vijay, S. B. Desu, Thin Solid Films, 2000, 366, (1–2), 8 LINK http://dx.doi.org/10.1016/S0040-6090(00)00862-2 [Google Scholar]
  92. L. Kavan, M. Grätzel, Electrochim. Acta, 1995, 40, (5), 643 LINK http://dx.doi.org/10.1016/0013-4686(95)90400-W [Google Scholar]
  93. P. S. Shinde, S. B. Sadale, P. S. Patil, P. N. Bhosale, A. Brüger, M. Neumann-Spallart, C. H. Bhosale, Sol. Energy Mater. Sol. Cells, 2008, 92, (3), 283 LINK http://dx.doi.org/10.1016/j.solmat.2007.09.001 [Google Scholar]
  94. T. Thiwawong, K. Onlaor, B. Tunhoo, Adv. Mater. Sci. Eng., 2013, 640428 LINK http://dx.doi.org/10.1155/2013/640428 [Google Scholar]
  95. G. Varshney, S. R. Kanel, D. M. Kempisty, V. Varshney, A. Agrawal, E. Sahle-Demessie, R. S. Varma, M. N. Nadagouda, Coord. Chem. Rev., 2016, 306, (1), 43 LINK http://dx.doi.org/10.1016/j.ccr.2015.06.011 [Google Scholar]
  96. Z.-M. Wang, E. Sahle-Demessie, A. Aly Hassan, C. Perrett, J. Environ. Eng., 2012, 138, (9), 923 LINK http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000542 [Google Scholar]
  97. B. Schimmoeller, H. Schulz, S. E. Pratsinis, A. Bareiss, A. Reitzmann, B. Kraushaar-Czarnetzki, J. Catal., 2006, 243, (1), 82 LINK http://dx.doi.org/10.1016/j.jcat.2006.07.007 [Google Scholar]
  98. E. Diler, S. Rioual, B. Lescop, D. Thierry, B. Rouvellou, Thin Solid Films, 2012, 520, (7), 2819 LINK http://dx.doi.org/10.1016/j.tsf.2011.10.033 [Google Scholar]
  99. A. Tricoli, M. Righettoni, S. E. Pratsinis, Langmuir, 2009, 25, (21), 12578 LINK http://dx.doi.org/10.1021/la901759p [Google Scholar]
  100. A. Tricoli, M. Graf, F. Mayer, S. Kuühne, A. Hierlemann, S. E. Pratsinis, Adv. Mater., 2008, 20, (16), 3005 LINK http://dx.doi.org/10.1002/adma.200701844 [Google Scholar]
  101. R. Kavitha, S. Meghani, V. Jayaram, Mater. Sci. Eng.: B, 2007, 139, (2–3), 134 LINK http://dx.doi.org/10.1016/j.mseb.2007.01.040 [Google Scholar]
  102. R. Strobel, S. E. Pratsinis, J. Mater. Chem., 2007, 17, (45), 4743 LINK http://dx.doi.org/10.1039/b711652g [Google Scholar]
  103. K. Wegner, S. Vinati, P. Piseri, A. Antonini, A. Zelioli, E. Barborini, C. Ducati, P. Milani, Nanotechnology, 2012, 23, (18), 185603 LINK http://dx.doi.org/10.1088/0957-4484/23/18/185603 [Google Scholar]
  104. H. Keskinen, J. M. Mäkelä, M. Aromaa, J. Keskinen, S. Areva, C. V. Teixeira, J. B. Rosenholm, V. Pore, M. Ritala, M. Leskelä, M. Raulio, M. S. Salkinoja-Salonen, E. Levänen, T. Mäntylä, Catal. Lett., 2006, 111, (3), 127 LINK http://dx.doi.org/10.1007/s10562-006-0138-3 [Google Scholar]
  105. L. Mädler, A. Roessler, S. E. Pratsinis, T. Sahm, A. Gurlo, N. Barsan, U. Weimar, Sens. Actuators B: Chem., 2006, 114, (1), 283 LINK http://dx.doi.org/10.1016/j.snb.2005.05.014 [Google Scholar]
  106. S. Thybo, S. Jensen, J. Johansen, T. Johannessen, O. Hansen, U. J. Quaade, J. Catal., 2004, 223, (2), 271 LINK http://dx.doi.org/10.1016/j.jcat.2004.01.027 [Google Scholar]
  107. D. Perednis, L. J. Gauckler, J. Electroceram., 2005, 14, (2), 103 LINK http://dx.doi.org/10.1007/s10832-005-0870-x [Google Scholar]
  108. C. Guild, S. Biswas, Y. Meng, T. Jafari, A. M. Gaffney, S. L. Suib, Catal. Today, 2014, 238, 87 LINK http://dx.doi.org/10.1016/j.cattod.2014.03.056 [Google Scholar]
  109. V. Iliev, D. Tomova, R. Todorovska, D. Oliver, L. Petrov, D. Todorovsky, M. Uzunova-Bujnova, Appl. Catal. A: Gen., 2006, 313, (2), 115 LINK http://dx.doi.org/10.1016/j.apcata.2006.06.039 [Google Scholar]
  110. N. L. Tarwal, P. S. Patil, Electrochim. Acta, 2011, 56, (18), 6510 LINK http://dx.doi.org/10.1016/j.electacta.2011.05.001 [Google Scholar]
  111. V. S. Mohite, M. A. Mahadik, S. S. Kumbhar, Y. M. Hunge, J.-H. Kim, A. V. Moholkar, K. Y. Rajpure, C. H. Bhosale, J. Photochem. Photobiol. B: Biol., 2015, 142, 204 LINK http://dx.doi.org/10.1016/j.jphotobiol.2014.12.004 [Google Scholar]
  112. I. O. Acik, L. Dolgov, M. Krunks, A. Mere, V. Mikli, S. Pikker, A. Loot, I. Sildos, Thin Solid Films, 2014, 553, 144 LINK http://dx.doi.org/10.1016/j.tsf.2013.11.125 [Google Scholar]
  113. I. O. Acik, N. G. Oyekoya, A. Mere, A. Loot, L. Dolgov, V. Mikli, M. Krunks, I. Sildos, Surf. Coat. Technol., 2015, 271, 27 LINK http://dx.doi.org/10.1016/j.surfcoat.2015.01.036 [Google Scholar]
/content/journals/10.1595/205651315X689829
Loading
/content/journals/10.1595/205651315X689829
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test