Skip to content
1887
Volume 60, Issue 1
  • ISSN: 2056-5135

Abstract

Oxidation technologies and advanced oxidation processes (AOPs) have been regarded as a competitive method for the remediation of persistent pollutants in water. Among AOPs, the use of photocatalysis has particularly attracted interest in recent decades. However, attempts to improve the efficiency of photocatalysts in terms of both enhanced activity and applicability under visible light have proved challenging. In this context, there is a need for processes able to achieve the synthesis of innovative nanostructured materials meeting these criteria with reproducibility and scalability in mind. The aim of this review is to focus on two themes of interest, namely noble metal based catalysts and spray pyrolysis (SP) processes. Several alternative SP methods have been reported and these will be described. The emphasis is placed on the recent use of SP for the synthesis of noble metal/semiconductor nanomaterials and their enhanced photocatalytic activity. Recent innovations in the design of SP processes and their potential to further improve noble metal-based photocatalysts are also examined. Finally, the possibility of using SP processes as a flexible tool to achieve immobilisation of photocatalysts onto substrates and in reactor for real water treatment application is considered.

Loading

Article metrics loading...

/content/journals/10.1595/205651315X689829
2016-01-01
2024-05-08
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/60/1/JMTR-60-1-Pelletier.html?itemId=/content/journals/10.1595/205651315X689829&mimeType=html&fmt=ahah

References

  1. Chong M. N., Jin B., Chow C. W. K., and Saint C. Water Res., 2010, 44, (10), 2997 LINK http://dx.doi.org/10.1016/j.watres.2010.02.039 [Google Scholar]
  2. Nagaveni K., Hegde M. S., and Madras G. J. Phys. Chem. B, 2004, 108, (52), 20204 LINK http://dx.doi.org/10.1021/jp047917v [Google Scholar]
  3. Devi L. G., and Kavitha R. Appl. Catal. B: Environ., 2013, 140–141, 559 LINK http://dx.doi.org/10.1016/j.apcatb.2013.04.035 [Google Scholar]
  4. Cho Y., Choi W., Lee C.-H., Hyeon T., and Lee H.-I. Environ. Sci. Technol., 2001, 35, (5), 966 LINK http://dx.doi.org/10.1021/es001245e [Google Scholar]
  5. Leary R., and Westwood A. Carbon, 2011, 49, (3), 741 LINK http://dx.doi.org/10.1016/j.carbon.2010.10.010 [Google Scholar]
  6. Li G.-S., Zhang D.-Q., and Yu J. C. Environ. Sci. Technol., 2009, 43, (18), 7079 LINK http://dx.doi.org/10.1021/es9011993 [Google Scholar]
  7. Balachandran S., Prakash N., Thirumalai K., Muruganandham M., Sillanpää M., and Swaminathan M. Ind. Eng. Chem. Res., 2014, 53, (20), 8346 LINK http://dx.doi.org/10.1021/ie404287m [Google Scholar]
  8. Zhang X., Chen Y. L., Liu R.-S., and Tsai D. P. Rep. Prog. Phys., 2013, 76, 046401 LINK http://dx.doi.org/10.1088/0034-4885/76/4/046401 [Google Scholar]
  9. Yu J., Yue L., Liu S., Huang B., and Zhang X. J. Colloid Interface Sci., 2009, 334, (1), 58 LINK http://dx.doi.org/10.1016/j.jcis.2009.03.034 [Google Scholar]
  10. Chan S. C., and Barteau M. A. Langmuir, 2005, 21, (12), 5588 LINK http://dx.doi.org/10.1021/la046887k [Google Scholar]
  11. Delannoy L., Hassan N. E., Musi A., To N. N. L., Krafft J.-M., and Louis C. J. Phys. Chem. B, 2006, 110, (45), 22471 LINK http://dx.doi.org/10.1021/jp062130l [Google Scholar]
  12. Hidalgo M. C., Maicu M., Navío J. A., and Colón G. J. Phys. Chem. C, 2009, 113, (29), 12840 LINK http://dx.doi.org/10.1021/jp903432p [Google Scholar]
  13. Fang J., Cao S.-W., Wang Z., Shahjamali M. M., Loo S. C. J., Barber J., and Xue C. Int. J. Hydrogen Energy, 2012, 37, (23), 17853 LINK http://dx.doi.org/10.1016/j.ijhydene.2012.09.023 [Google Scholar]
  14. Li W.-C., Comotti M., and Schüth F. J. Catal., 2006, 237, (1), 190 LINK http://dx.doi.org/10.1016/j.jcat.2005.11.006 [Google Scholar]
  15. Teoh W. Y. Materials, 2013, 6, (8), 3194 LINK http://dx.doi.org/10.3390/ma6083194 [Google Scholar]
  16. Teoh W. Y., Amal R., and Mädler L. Nanoscale, 2010, 2, (8), 1324 LINK http://dx.doi.org/10.1039/c0nr00017e [Google Scholar]
  17. Pratsinis S. E. AIChE J., 2010, 56, (12), 3028 LINK http://dx.doi.org/10.1002/aic.12478 [Google Scholar]
  18. Mueller R., Mädler L., and Pratsinis S. E. Chem. Eng. Sci., 2003, 58, (10), 1969 LINK http://dx.doi.org/10.1016/S0009-2509(03)00022-8 [Google Scholar]
  19. Mueller R., Jossen R., Pratsinis S. E., Watson M., and Akhtar M. K. J. Am. Ceram. Soc., 2004, 87, (2), 197 LINK http://dx.doi.org/10.1111/j.1551-2916.2004.00197.x [Google Scholar]
  20. Kaneko K., Moon W.-J., Inoke K., Horita Z., Ohara S., Adschiri T., Abe H., and Naito M. Mater. Sci. Eng.: A, 2005, 403, (1–2), 32 LINK http://dx.doi.org/10.1016/j.msea.2005.05.056 [Google Scholar]
  21. Kozhukharov S., and Tchaoushev S. J. Chem. Technol. Metall., 2013, 48, (1), 111 LINK http://dl.uctm.edu/journal/node/j2013-1/15_Stefan_Kojukharov_111-117.pdf [Google Scholar]
  22. Strobel R., Alfons A., and Pratsinis S. E. Adv. Powder Technol., 2006, 17, (5), 457 LINK http://dx.doi.org/10.1163/156855206778440525 [Google Scholar]
  23. Kumar S. G., and Devi L. G. J. Phys. Chem. A, 2011, 115, (46), 13211 LINK http://dx.doi.org/10.1021/jp204364a [Google Scholar]
  24. Henderson M. A. Surf. Sci. Rep., 2011, 66, (6–7), 185 LINK http://dx.doi.org/10.1016/j.surfrep.2011.01.001 [Google Scholar]
  25. Subramanian V., Wolf E. E., and Kamat P. V. J. Am. Chem. Soc., 2004, 126, (15), 4943 LINK http://dx.doi.org/10.1021/ja0315199 [Google Scholar]
  26. Linsebigler A. L., Lu G., and Yates J. T. Chem. Rev., 1995, 95, (3), 735 LINK http://dx.doi.org/10.1021/cr00035a013 [Google Scholar]
  27. Sakthivel S., Shankar M. V., Palanichamy M., Arabindoo B., Bahnemann D. W., and Murugesan V. Water Res., 2004, 38, (13), 3001 LINK http://dx.doi.org/10.1016/j.watres.2004.04.046 [Google Scholar]
  28. Kochuveedu S. T., Jang Y. H., and Kim D. H. Chem. Soc. Rev., 2013, 42, (21), 8467 LINK http://dx.doi.org/10.1039/c3cs60043b [Google Scholar]
  29. Mädler L. , Stark W. J., and Pratsinis S. E. J. Mater. Res., 2003, 18, (1), 115 LINK http://dx.doi.org/10.1557/JMR.2003.0017 [Google Scholar]
  30. Strobel R., and Pratsinis S. E. Platinum Metals Rev., 2009, 53, (1), 11 LINK http://www.technology.matthey.com/article/53/1/11-20/# [Google Scholar]
  31. Teoh W. Y., Mädler L., Beydoun D., Pratsinis S. E., and Amal R. Chem. Eng. Sci., 2005, 60, (21), 5852 LINK http://dx.doi.org/10.1016/j.ces.2005.05.037 [Google Scholar]
  32. Teoh W. Y., Mädler L., and Amal R. J. Catal., 2007, 251, (2), 271 LINK http://dx.doi.org/10.1016/j.jcat.2007.08.008 [Google Scholar]
  33. Tiwari V., Jiang J., Sethi V., and Biswas P. Appl. Catal. A: Gen., 2008, 345, (2), 241 LINK http://dx.doi.org/10.1016/j.apcata.2008.05.003 [Google Scholar]
  34. Paulauskas I. E., Modeshia D. R., Ali T. T., El-Mossalamy E. H., Obaid A. Y., Basahel S. N., Al-Ghamdi A. A., and Sartain F. K. Platinum Metals Rev., 2013, 57, (1), 32 LINK http://www.technology.matthey.com/article/57/1/32-43/# [Google Scholar]
  35. Haugen A. B., Kumakiri I., Simon C., and Einarsrud M.-A. J. Eur. Ceram. Soc., 2011, 31, (3), 291 LINK http://dx.doi.org/10.1016/j.jeurceramsoc.2010.10.006 [Google Scholar]
  36. Height M. J., Pratsinis S. E., Mekasuwandumrong O., and Praserthdam P. Appl. Catal. B: Environ., 2006, 63, (3–4), 305 LINK http://dx.doi.org/10.1016/j.apcatb.2005.10.018 [Google Scholar]
  37. Siriwong C., Liewhiran C., Wetchakun N., and Phanichphant S. Characterization and Photocatalytic Activity of Pd-doped ZnO Nanoparticles Synthesized by Flame Spray Pyrolysis’, Nanoelectronics Conference, INEC 2008, 2nd IEEE International, Shanghai, China, 2008, pp. 869874 LINK http://dx.doi.org/10.1109/INEC.2008.4585621 [Google Scholar]
  38. Pawinrat P., Mekasuwandumrong O., and Panpranot J. Catal. Commun., 2009, 10, (10), 1380 LINK http://dx.doi.org/10.1016/j.catcom.2009.03.002 [Google Scholar]
  39. Kelly K. L., Coronado E., Zhao L. L., and Schatz G. C. J. Phys. Chem. B., 2003, 107, (3), 668 LINK http://dx.doi.org/10.1021/jp026731y [Google Scholar]
  40. Willets K. A., and Van Duyne R. P. Ann. Rev. Phys. Chem., 2007, 58, 267 LINK http://dx.doi.org/10.1146/annurev.physchem.58.032806.104607 [Google Scholar]
  41. Bumajdad A., and Madkour M. Phys. Chem. Chem. Phys., 2014, (16), 7146 LINK http://dx.doi.org/10.1039/c3cp54411g [Google Scholar]
  42. Pongthawornsakun B., Fujita S.-i., Arai M., Mekasuwandumrong O., and Panpranot J. Appl. Catal. A: Gen., 2013, 467, 132 LINK http://dx.doi.org/10.1016/j.apcata.2013.07.006 [Google Scholar]
  43. Gunawan C., Teoh W. Y., Marquis C. P., Lifia J., and Amal R. Small, 2009, 5, (3), 341 LINK http://dx.doi.org/10.1002/smll.200801202 [Google Scholar]
  44. Han C., Likodimos V., Khan J. A., Nadagouda M. N., Andersen J., Falaras P., Rosales-Lombardi P., and Dionysiou D. D. Environ. Sci. Pollut. Res., 2014, 21, (20), 11781 LINK http://dx.doi.org/10.1007/s11356-013-2233-5 [Google Scholar]
  45. Kaviya S., and Prasad E. RSC Advances, 2015, 5, (22), 17179 LINK http://dx.doi.org/10.1039/C4RA15293J [Google Scholar]
  46. Hannemann S., Grunwaldt J.-D., Krumeich F., Kappen P., and Baiker A. Appl. Surf. Sci., 2006, 252, (22), 7862 LINK http://dx.doi.org/10.1016/j.apsusc.2005.09.065 [Google Scholar]
  47. Sotiriou G. A., Etterlin G. D., Spyrogianni A., Krumeich F., Leroux J.-C., and Pratsinis S. E. Chem. Commun., 2014, 50, (88), 13559 LINK http://dx.doi.org/10.1039/C4CC05297H [Google Scholar]
  48. Zielińska-Jurek A., Kowalska E., Sobczak J. W., Lisowski W., Ohtani B., and Zaleska A. Appl. Catal. B: Environ., 2011, 101, (3–4), 504 LINK http://dx.doi.org/10.1016/j.apcatb.2010.10.022 [Google Scholar]
  49. Schulz H., Mädler L., Strobel R., Jossen R., Pratsinis S. E., and Johannessen T. J. Mater. Res., 2005, 20, (9), 2568 LINK http://dx.doi.org/10.1557/jmr.2005.0319 [Google Scholar]
  50. Herrmann J.-M. New J. Chem., 2012, 36, (4), 883 LINK http://dx.doi.org/10.1039/c2nj20914d [Google Scholar]
  51. Zuo F., Wang L., Wu T., Zhang Z., Borchardt D., and Feng P. J. Am. Chem. Soc., 2010, 132, (34), 11856 LINK http://dx.doi.org/10.1021/ja103843d [Google Scholar]
  52. Hamdy M. S., Amrollahi R., and Mul G. ACS Catal., 2012, 2, (12), 2641 LINK http://dx.doi.org/10.1021/cs300593d [Google Scholar]
  53. Zhu Q., Peng Y., Lin L., Fan C.-M., Gao G.-Q., Wang R.-X., and Xu A.-W. J. Mater. Chem. A, 2014, 2, (12), 4429 LINK http://dx.doi.org/10.1039/c3ta14484d [Google Scholar]
  54. Naldoni A., Allieta M., Santangelo S., Marelli M., Fabbri F., Cappelli S., Bianchi C. L., Psaro R., and Dal Santo V. J. Am. Chem. Soc., 2012, 134, (18), 7600 LINK http://dx.doi.org/10.1021/ja3012676 [Google Scholar]
  55. Yang Y., Zhang T., Le L., Ruan X., Fang P., Pan C., Xiong R., Shi J., and Wei J. Sci. Rep., 2014, 4, 7045 LINK http://dx.doi.org/10.1038/srep07045 [Google Scholar]
  56. Kho Y. K., Teoh W. Y., Mädler L., and Amal R. Chem. Eng. Sci., 2011, 66, (11), 2409 LINK http://dx.doi.org/10.1016/j.ces.2011.02.058 [Google Scholar]
  57. Teleki A., and Pratsinis S. E. Phys. Chem. Chem. Phys., 2009, 11, (19), 3742 LINK http://dx.doi.org/10.1039/b821590a [Google Scholar]
  58. Wegner K., and Pratsinis S. E. AIChE J., 2003, 49, (7), 1667 LINK http://dx.doi.org/10.1002/aic.690490707 [Google Scholar]
  59. Huo J., Hu Y., Jiang H., and Li C. Nanoscale, 2014, 6, (15), 9078 LINK http://dx.doi.org/10.1039/C4NR00972J [Google Scholar]
  60. Tauster S. J. Acc. Chem. Res., 1987, 20, (11), 389LINK http://dx.doi.org/10.1021/ar00143a001 [Google Scholar]
  61. Fujiwara K., Deligiannakis Y., Skoutelis C. G., and Pratsinis S. E. Appl. Catal. B: Environ., 2014, 154–155, 9 LINK http://dx.doi.org/10.1016/j.apcatb.2014.01.060 [Google Scholar]
  62. Dozzi M. V., Chiarello G. L., and Selli E. J. Adv. Oxid. Technol., 2010, 13, (3), 305 [Google Scholar]
  63. Marschall R., and Wang L. Catal. Today, 2014, 225, 111 LINK http://dx.doi.org/10.1016/j.cattod.2013.10.088 [Google Scholar]
  64. Li D., Haneda H., Labhsetwar N. K., Hishita S., and Ohashi N. Chem. Phys. Lett., 2005, 401, (4–6), 579 LINK http://dx.doi.org/10.1016/j.cplett.2004.11.126 [Google Scholar]
  65. Li D., Ohashi N., Hishita S., Kolodiazhnyi T., and Haneda H. J. Solid State Chem., 2005, 178, (11), 3293 LINK http://dx.doi.org/10.1016/j.jssc.2005.08.008 [Google Scholar]
  66. Yu J. C., Ho W., Yu J., Yip H., Wong P. K., and Zhao J. Environ. Sci. Technol., 2005, 39, (4), 1175 LINK http://dx.doi.org/10.1021/es035374h [Google Scholar]
  67. Liu H., and Gao L. J. Am. Ceram. Soc., 2004, 87, (8), 1582 LINK http://dx.doi.org/10.1111/j.1551-2916.2004.01582.x [Google Scholar]
  68. Asahi R., Morikawa T., Ohwaki T., Aoki K., and Taga Y. Science, 2001, 293, (5528), 269 LINK http://dx.doi.org/10.1126/science.1061051 [Google Scholar]
  69. Zhang J., Wu Y., Xing M., Leghari S. A. K., and Sajjad S. Energy Environ. Sci., 2010, 3, (6), 715 LINK http://dx.doi.org/10.1039/b927575d [Google Scholar]
  70. Etacheri V., Seery M. K., Hinder S. J., and Pillai S. C. Chem. Mater., 2010, 22, (13), 3843 LINK http://dx.doi.org/10.1021/cm903260f [Google Scholar]
  71. Dolat D., Mozia S., Ohtani B., and Morawski A. W. Chem. Eng. J., 2013, 225, 358 LINK http://dx.doi.org/10.1016/j.cej.2013.03.047 [Google Scholar]
  72. Jiang Y., Scott J., and Amal R. Appl. Catal. B: Environ., 2012, 126, 290 LINK http://dx.doi.org/10.1016/j.apcatb.2012.07.027 [Google Scholar]
  73. Chiarello G. L., Dozzi M. V., Scavini M., Grunwaldt J.-D., and Selli E. Appl. Catal. B: Environ., 2014, 160–161, 144 LINK http://dx.doi.org/10.1016/j.apcatb.2014.05.006 [Google Scholar]
  74. Huo J., Hu Y., Jiang H., Hou X., and Li C. Chem. Eng. J., 2014, 258, 163 LINK http://dx.doi.org/10.1016/j.cej.2014.07.026 [Google Scholar]
  75. Strobel R., Mädler L., Piacentini M., Maciejewski M., Baiker A., and Pratsinis S. E. Chem. Mater., 2006, 18, (10), 2532 LINK http://dx.doi.org/10.1021/cm0600529 [Google Scholar]
  76. Høj M., Pham D. K., Brorson M., Mädler L., Jensen A. D., and Grunwaldt J.-D. Catal. Lett., 2013, 143, (5), 386 LINK http://dx.doi.org/10.1007/s10562-013-0990-x [Google Scholar]
  77. Grossmann H. K., Grieb T., Meierhofer F., Hodapp M. J., Noriler D., Gröhn A., Meier H. F., Fritsching U., Wegner K., and Mädler L. J. Nanopart. Res., 2015, 17, (4), 1 LINK http://dx.doi.org/10.1007/s11051-015-2975-8 [Google Scholar]
  78. Shan A. Y., Ghazi T. I. M., and Rashid S. A. Appl. Catal. A: Gen., 2010, 389, (1–2), 1 LINK http://dx.doi.org/10.1016/j.apcata.2010.08.053 [Google Scholar]
  79. Du P., Carneiro J. T., Moulijn J. A., and Mul G. Appl. Catal. A: Gen., 2008, 334, (1–2), 119 LINK http://dx.doi.org/10.1016/j.apcata.2007.09.045 [Google Scholar]
  80. Dzinun H., Othman M. H. D., Ismail A. F., Puteh M. H., Rahman M. A., and Jaafar J. Chem. Eng. J., 2015, 269, 255 LINK http://dx.doi.org/10.1016/j.cej.2015.01.114 [Google Scholar]
  81. Lazar M. A., Varghese S., and Nair S. S. Catalysts, 2012, 2, (4), 572 LINK http://dx.doi.org/10.3390/catal2040572 [Google Scholar]
  82. Brinker C. J., and Harrington M. S. Sol. Energy Mater., 1981, 5, (2), 159 LINK http://dx.doi.org/10.1016/0165-1633(81)90027-7 [Google Scholar]
  83. San Vicente G., Morales A., and Gutierrez M. T. Thin Solid Films, 2001, 391, (1), 133 LINK http://dx.doi.org/10.1016/S0040-6090(01)00963-4 [Google Scholar]
  84. Fan Q., McQuillin B., Ray A. K., Turner M. L., and Seddon A. B. J. Phys. D: Appl. Phys., 2000, 33, (21), 2683 LINK http://dx.doi.org/10.1088/0022-3727/33/21/303 [Google Scholar]
  85. Battiston G. A., Gerbasi R., Porchia M., and Marigo A. Thin Solid Films, 1994, 239, (2), 186 LINK http://dx.doi.org/10.1016/0040-6090(94)90849-4 [Google Scholar]
  86. Won D.-J., Wang C.-H., Jang H.-K., and Choi D.-J. Appl. Phys. A, 2001, 73, (5), 595 LINK http://dx.doi.org/10.1007/s003390100804 [Google Scholar]
  87. Löbl P., Huppertz M., and Mergel D. Thin Solid Films, 1994, 251, (1), 72 LINK http://dx.doi.org/10.1016/0040-6090(94)90843-5 [Google Scholar]
  88. Meng L.-J., and dos Santos M. P. Thin Solid Films, 1993, 226, (1), 22 LINK http://dx.doi.org/10.1016/0040-6090(93)90200-9 [Google Scholar]
  89. Martin N., Rousselot C., Savall C., and Palmino F. Thin Solid Films, 1996, 287, (1–2), 154 LINK http://dx.doi.org/10.1016/S0040-6090(96)08782-2 [Google Scholar]
  90. Okimura K. Surf. Coat. Technol., 2001, 135, (2–3), 286 LINK http://dx.doi.org/10.1016/S0257-8972(00)00999-3 [Google Scholar]
  91. Moret M. P., Zallen R., Vijay D. P., and Desu S. B. Thin Solid Films, 2000, 366, (1–2), 8 LINK http://dx.doi.org/10.1016/S0040-6090(00)00862-2 [Google Scholar]
  92. Kavan L., and Grätzel M. Electrochim. Acta, 1995, 40, (5), 643 LINK http://dx.doi.org/10.1016/0013-4686(95)90400-W [Google Scholar]
  93. Shinde P. S., Sadale S. B., Patil P. S., Bhosale P. N., Brüger A., Neumann-Spallart M., and Bhosale C. H. Sol. Energy Mater. Sol. Cells, 2008, 92, (3), 283 LINK http://dx.doi.org/10.1016/j.solmat.2007.09.001 [Google Scholar]
  94. Thiwawong T., Onlaor K., and Tunhoo B. Adv. Mater. Sci. Eng., 2013, 640428 LINK http://dx.doi.org/10.1155/2013/640428 [Google Scholar]
  95. Varshney G., Kanel S. R., Kempisty D. M., Varshney V., Agrawal A., Sahle-Demessie E., Varma R. S., and Nadagouda M. N. Coord. Chem. Rev., 2016, 306, (1), 43 LINK http://dx.doi.org/10.1016/j.ccr.2015.06.011 [Google Scholar]
  96. Wang Z.-M., Sahle-Demessie E., Aly Hassan A., and Perrett C. J. Environ. Eng., 2012, 138, (9), 923 LINK http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000542 [Google Scholar]
  97. Schimmoeller B., Schulz H., Pratsinis S. E., Bareiss A., Reitzmann A., and Kraushaar-Czarnetzki B. J. Catal., 2006, 243, (1), 82 LINK http://dx.doi.org/10.1016/j.jcat.2006.07.007 [Google Scholar]
  98. Diler E., Rioual S., Lescop B., Thierry D., and Rouvellou B. Thin Solid Films, 2012, 520, (7), 2819 LINK http://dx.doi.org/10.1016/j.tsf.2011.10.033 [Google Scholar]
  99. Tricoli A., Righettoni M., and Pratsinis S. E. Langmuir, 2009, 25, (21), 12578 LINK http://dx.doi.org/10.1021/la901759p [Google Scholar]
  100. Tricoli A., Graf M., Mayer F., Kuühne S., Hierlemann A., and Pratsinis S. E. Adv. Mater., 2008, 20, (16), 3005 LINK http://dx.doi.org/10.1002/adma.200701844 [Google Scholar]
  101. Kavitha R., Meghani S., and Jayaram V. Mater. Sci. Eng.: B, 2007, 139, (2–3), 134 LINK http://dx.doi.org/10.1016/j.mseb.2007.01.040 [Google Scholar]
  102. Strobel R., and Pratsinis S. E. J. Mater. Chem., 2007, 17, (45), 4743 LINK http://dx.doi.org/10.1039/b711652g [Google Scholar]
  103. Wegner K., Vinati S., Piseri P., Antonini A., Zelioli A., Barborini E., Ducati C., and Milani P. Nanotechnology, 2012, 23, (18), 185603 LINK http://dx.doi.org/10.1088/0957-4484/23/18/185603 [Google Scholar]
  104. Keskinen H., Mäkelä J. M., Aromaa M., Keskinen J., Areva S., Teixeira C. V., Rosenholm J. B., Pore V., Ritala M., Leskelä M., Raulio M., Salkinoja-Salonen M. S., Levänen E., and Mäntylä T. Catal. Lett., 2006, 111, (3), 127 LINK http://dx.doi.org/10.1007/s10562-006-0138-3 [Google Scholar]
  105. Mädler L., Roessler A., Pratsinis S. E., Sahm T., Gurlo A., Barsan N., and Weimar U. Sens. Actuators B: Chem., 2006, 114, (1), 283 LINK http://dx.doi.org/10.1016/j.snb.2005.05.014 [Google Scholar]
  106. Thybo S., Jensen S., Johansen J., Johannessen T., Hansen O., and Quaade U. J. J. Catal., 2004, 223, (2), 271 LINK http://dx.doi.org/10.1016/j.jcat.2004.01.027 [Google Scholar]
  107. Perednis D., and Gauckler L. J. J. Electroceram., 2005, 14, (2), 103 LINK http://dx.doi.org/10.1007/s10832-005-0870-x [Google Scholar]
  108. Guild C., Biswas S., Meng Y., Jafari T., Gaffney A. M., and Suib S. L. Catal. Today, 2014, 238, 87 LINK http://dx.doi.org/10.1016/j.cattod.2014.03.056 [Google Scholar]
  109. Iliev V., Tomova D., Todorovska R., Oliver D., Petrov L., Todorovsky D., and Uzunova-Bujnova M. Appl. Catal. A: Gen., 2006, 313, (2), 115 LINK http://dx.doi.org/10.1016/j.apcata.2006.06.039 [Google Scholar]
  110. Tarwal N. L., and Patil P. S. Electrochim. Acta, 2011, 56, (18), 6510 LINK http://dx.doi.org/10.1016/j.electacta.2011.05.001 [Google Scholar]
  111. Mohite V. S., Mahadik M. A., Kumbhar S. S., Hunge Y. M., Kim J.-H., Moholkar A. V., Rajpure K. Y., and Bhosale C. H. J. Photochem. Photobiol. B: Biol., 2015, 142, 204 LINK http://dx.doi.org/10.1016/j.jphotobiol.2014.12.004 [Google Scholar]
  112. Acik I. O., Dolgov L., Krunks M., Mere A., Mikli V., Pikker S., Loot A., and Sildos I. Thin Solid Films, 2014, 553, 144 LINK http://dx.doi.org/10.1016/j.tsf.2013.11.125 [Google Scholar]
  113. Acik I. O., Oyekoya N. G., Mere A., Loot A., Dolgov L., Mikli V., Krunks M., and Sildos I. Surf. Coat. Technol., 2015, 271, 27 LINK http://dx.doi.org/10.1016/j.surfcoat.2015.01.036 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651315X689829
Loading
/content/journals/10.1595/205651315X689829
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error