Skip to content
Volume 60, Issue 1
  • ISSN: 2056-5135


The solid phase materials or sorbents applied to the removal of uranium from industrial waste streams and surface waters are reviewed. The speciation of the element in the environment is discussed. A series of examples on uranium remediation from the recent literature using the different kinds of solid phase sorbents are reviewed in detail and evaluated. The criteria for making the best choice of ion exchanger are discussed with suggestions for further evaluation of the described technologies.


Article metrics loading...

Loading full text...

Full text loading...



  1. Edwards G. Canadian Coalition for Nuclear Responsibility, ‘Uranium: The Deadliest Metal’: (Accessed on 22nd July, 2014) [Google Scholar]
  2. Lottermoser B. G. ‘Mine Wastes: Characterization, Treatment, Environmental Impacts’, 2nd Edn., Springer-Verlag, Berlin, Germany, 2007 LINK [Google Scholar]
  3. ‘What is Uranium? How Does it Work?’, World Nuclear Association, London, UK, Updated March, 2014: (Accessed on 18th July, 2014)
  4. National Research Council of the National Academies, ‘Uranium Mining in Virginia: Scientific, Technical, Environmental, Human Health and Safety, and Regulatory Aspects of Uranium Mining and Processing in Virginia’, The National Academies Press, Washington, DC, USA, 2012 LINK [Google Scholar]
  5. Wanty R. B., Miller W. R., Briggs P. H., and McHugh J. B. Rev. Econ. Geol., 1999, 6A, 201 [Google Scholar]
  6. Langmuir D. Geochim. Cosmochim. Acta, 1978, 42, (6A), 547 LINK [Google Scholar]
  7. Ivanovich M., and Harmon R. S. ‘Uranium Series Disequilibrium: Applications to Environmental Problems’, Clarendon Press, Oxford, UK, 1982 [Google Scholar]
  8. Markich S. J. Sci. World J., 2002, 2, 707 LINK [Google Scholar]
  9. Huang H. H. ‘StabCal Program for Thermodynamic Modelling of Aqueous Systems’, Montana Tech of the University of Montana, Butte, MT, USA, 2010 [Google Scholar]
  10. Davis J. A., and Curtis G. P. ‘Application of Surface Complexation Modeling to Describe Uranium (VI) Adsorption and Retardation at the Uranium Mill Tailings Site at Naturita, Colorado’, NUREG/CR-6820, Washington, USA, 2003 LINK [Google Scholar]
  11. Brookins D. G. “Eh-pH Diagrams for Geochemistry”, Springer-Verlag, Berlin, Germany, 1988 LINK [Google Scholar]
  12. Leavitt J. J., Howe K. J., and Cabaniss S. E. Appl. Geochem., 2011, 26, (12), 2019 LINK [Google Scholar]
  13. Choi S.-H., Choi M.-S., Park Y.-T., Lee K. P., and Kang H.-D. Radiat. Phys. Chem., 2003, 67, (3–4), 387 LINK [Google Scholar]
  14. Kabay N., Hayashi J., Jyo A., and Egawa H. J.Appl. Poly. Sci., 1994, 54, (3), 333 LINK [Google Scholar]
  15. Kabay N., Katakai A., and Sugo T. Radiat. Phys. Chem., 1995, 46, (4–6), 833 LINK [Google Scholar]
  16. Sadeghi H., Azhdari H., Arabi H., and Moghaddam A. Z. J. Hazard. Mater., 2012, 215–216, 208 LINK [Google Scholar]
  17. Elhefnawy O. A., Zidan W. I., Abo-Aly M. M., Bakier E. M., and Elsayed G. A. J. Radioanal. Nucl. Chem., 2014, 299, (3), 1821 LINK [Google Scholar]
  18. Guettaf H., Becis A., Ferhat K., Hanou K., Bouchiha D., Yakoubi K., and Ferrad F. Phys. Proc., 2009, 2, (3), 765 LINK [Google Scholar]
  19. Himsley A. ‘Application of Ion Exchange to Uranium Recovery’, in “Ion Exchange Technology in the Nuclear Fuel Cycle”IAEA-TECDOC-365, International Atomic Energy Agency, Vienna, Austria, 1986 LINK [Google Scholar]
  20. Eskandari Nasab M. Fuel, 2014, 116, 595 LINK [Google Scholar]
  21. Ladeira A. C. Q., and Morais C. A. Min. Eng., 2005, 18, (13–14), 1337 LINK [Google Scholar]
  22. Song Y., Wang Y., Wang L., Song C., Yang Z. Z., and Zhao A. React. Funct. Polymers, 1999, 39, (3), 245 LINK [Google Scholar]
  23. Ladeira A. C. Q., and Gonçalves C. R. J. Hazard. Mater., 2007, 148, (3), 499 LINK [Google Scholar]
  24. Rosenberg E., Hart C., Hughes M., Kailasam V., Allen J., Wood J., and Cross B. ‘Performance Improvements through Structural Design and Comparisons with Polystyrene Resins of Silica Polyamine Composites’, in “67th International Water Conference 2006”, IWC 06-34, 22nd–26th October, 2006, Pittsburgh, Pennsylvania, USA, p. 345 [Google Scholar]
  25. Musić S., Filipović-Vinceković N., and Sekovanić L. Braz. J. Chem. Eng, 2011, 28, (1), 89 LINK [Google Scholar]
  26. Allen J. J., Rosenberg E., Johnston E., and Hart C. ACS Appl. Mater. Interfaces, 2012, 4, (3), 1573 LINK [Google Scholar]
  27. Berlin M., Allen J., Kailasam V., Rosenberg D., and Rosenberg E. Appl. Organomet. Chem., 2011, 25, (7), 530 LINK [Google Scholar]
  28. Alothman Z. A. Materials, 2012, 5, (12), 2874 LINK [Google Scholar]
  29. Antonietti M., and Göltner C. Max-Planck-Gesellschaft, ‘Lyotropic Liquid-Crystal Phases of Amphiphilic Block Copolymers as Template for the Preparation of Mesoporous Solids’, US Patent 6,054,111; 2000 [Google Scholar]
  30. Shiraishi Y., Nishimura G., Hirai T., and Komasawa I. Ind. Eng. Chem. Res., 2002, 41, (20), 5065 LINK [Google Scholar]
  31. Hughes M. A., Nielsen D., Rosenberg E., Gobetto R., Viale A., Burton S. D., and Ferel J. Ind. Eng. Chem. Res., 2006, 45, (19), 6538 LINK [Google Scholar]
  32. Rosenberg E., Miranda P., and Wong Y. O. ‘Oxine Modified Silican Polyamine Composites for the Separation of Gallium from Aluminum, Ferric From Nickel and Copper from Nickel’, US Patent 8,343,446; 2013 and related patents cited therein [Google Scholar]
  33. Rosenberg E., Abd-El-Aziz A. S., Carraher C. E. Jr, Pittman C. U. Jr, and Zeldin M. ‘Silica Polyamine Composites: Advanced Materials for Metal Ion Recovery and Remediation’, in “Macromolecules Containing Metal and Metal-Like Elements: Group IVA Polymers”, eds. Vol. 4John Wiley & Sons, Inc, New Jersey, USA, 2005, p. 51 LINK [Google Scholar]
  34. Kailasam V., and Rosenberg E. Hydrometallurgy, 2012, 129–130, 97 LINK [Google Scholar]
  35. Rosenberg E., Kailasam V., and Pinson W. G. ‘Oxyanion Removal and Recovery using Silica Polyamine Composites’, in “74th Annual International Water Conference 2013”, IWC-13-13, 17th–21st November, 2013, Orlando, Florida, USA, p. 211 [Google Scholar]
  36. Kailasam V., Rosenberg E., and Nielsen D. Ind. Eng. Chem. Res., 2009, 48, (8), 3991 LINK [Google Scholar]
  37. Abdel-Fattah T. M., Haggag S. M. S., and Mahmoud M. E. Chem. Eng. J., 2011, 175, 117 LINK [Google Scholar]
  38. Donia A. M., Atia A. A., Daher A. M., Desouky O. A., and Elshehy E. A. Int. J. Min. Proc., 2011, 101, (1–4), 81 LINK [Google Scholar]
  39. Tashkhourian J., Abdoluosofi L. M., Pakniat M., and Montazerozohori M. J. Hazard. Mater., 2011, 187, (1–3), 75 LINK [Google Scholar]
  40. Sadeghi S., and Sheikhzadeh E. J. Hazard. Mater., 2009, 163, (2–3), 861 LINK [Google Scholar]
  41. Barbette F., Rascalou F., Chollet H., Babouhot J. L., Denat F., and Guilard R. Anal. Chim. Acta, 2004, 502, (2), 179 LINK [Google Scholar]
  42. Hagers D. L. ‘Performance Evaluation for Heavy Metal Ion Removal Using Silica-Polyamine Composite Materials Made with Different Silica Gels and Polyamines’, Masters Dissertation, University of Montana, USA, 1999 LINK [Google Scholar]
  43. Tutu H., Bakatula E., Dlamini S., Rosenberg E., Kailasam V., and Cukrowska E. M. Water SA, 2013, 39, (4), 437 LINK [Google Scholar]
  44. Nielsen D. J. ‘Synthesis and Characterization of Novel Silica Polyamine Composites and their Application to the Reclamation of Hazardous Mining Wastewater and Tailings’, PhD Thesis, University of Montana, USA, 2006 LINK [Google Scholar]
  45. Johnson B. E., Santschi P. H., Chuang C.-Y., Otosaka S., Addleman R. S., Douglas M., Rutledge R. D., Chouyyok W., Davidson J. D., Fryxell G. E., and Schwantes J. M. Environ. Sci. Technol., 2012, 46, (20), 11251 LINK [Google Scholar]
  46. Davidson J. D., Wiacek R. J., Burton S., Li X. S., Fryxell G. E., Addleman R. S., Yantasee W., Sangvanich T., and Pattamakomsan K. Inorg. Chem. Commun., 2012, 18, 92 LINK [Google Scholar]
  47. Lin Y., Fiskum S. K., Yantasee W., Wu H., Mattigod S. V., Vorpagel E., Fryxell G. E., Raymond K. N., and Xu J. Environ. Sci. Technol., 2005, 39, (5), 1332 LINK [Google Scholar]
  48. Jung Y., Kim S., Park S.-J., and Kim J. M. Colloid. Surface. A: Physicochem. Eng. Aspects, 2008, 313–314, 162 LINK [Google Scholar]
  49. Manos M. J., and Kanatzidis M. G. J. Am. Chem. Soc., 2009, 131, (18), 6599 LINK [Google Scholar]
  50. Manos M. J., and Kanatzidis M. G. J. Am. Chem. Soc., 2012, 134, (39), 16441 LINK [Google Scholar]
  51. Manos M. J., Ding N., and Kanatzidis M. G. Proc. Natl. Acad. Sci. USA, 2008, 105, (10), 3696 LINK [Google Scholar]
  52. ‘Application of Ion Exchange Processes for the Treatment of Radioactive Waste and Management of Spent Ion Exchangers’, Technical Reports Series No. 408, International Atomic Energy Agency, Vienna, Austria, 2002 LINK [Google Scholar]
  53. Allen J., Berlin M., Hughes M., Johnston E., Kailasam V., Rosenberg E., Sardot T., Wood J., and Hart C. Mater. Chem. Phys., 2011, 126, (3), 973 LINK [Google Scholar]
  54. Zagorodni A. A. “Ion Exchange Materials: Properties and Applications”, Elsevier, Amsterdam, The Netherlands, 2007 [Google Scholar]
  55. Helfferich F. G. “Ion Exchange”, McGraw-Hill, New York, USA, 1962 [Google Scholar]
  56. Inamuddin I., and Luqman M. “Ion Exchange Technology I: Theory and Materials”, eds. Springer, Dordrecht, The Netherlands, 2012 LINK [Google Scholar]
  57. Inamuddin I., and Luqman M. “Ion Exchange Technology II: Applications”, eds. Springer, Dordrecht, The Netherlands, 2012 LINK [Google Scholar]
  58. Harland C. E. “Ion Exchange Theory and Practice,” 2nd Edition, Royal Society of Chemistry, London, UK, 1994 LINK [Google Scholar]
  59. Strathmann H. “Ion-Exchange Membrane Separation Processes”, ed. Membrane Science and Technology, Vol. 9, Elsevier, Amsterdam, The Netherlands, 2004 [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error