Skip to content
1887
Volume 60, Issue 1
  • ISSN: 2056-5135

Abstract

The solid phase materials or sorbents applied to the removal of uranium from industrial waste streams and surface waters are reviewed. The speciation of the element in the environment is discussed. A series of examples on uranium remediation from the recent literature using the different kinds of solid phase sorbents are reviewed in detail and evaluated. The criteria for making the best choice of ion exchanger are discussed with suggestions for further evaluation of the described technologies.

Loading

Article metrics loading...

/content/journals/10.1595/205651316X690178
2016-01-01
2024-02-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/60/1/JMTR-60-1-Rosenberg.html?itemId=/content/journals/10.1595/205651316X690178&mimeType=html&fmt=ahah

References

  1. Edwards G. Canadian Coalition for Nuclear Responsibility, ‘Uranium: The Deadliest Metal’: http://www.ccnr.org/uranium_deadliest.html (Accessed on 22nd July, 2014) [Google Scholar]
  2. Lottermoser B. G. ‘Mine Wastes: Characterization, Treatment, Environmental Impacts’, 2nd Edn., Springer-Verlag, Berlin, Germany, 2007 LINK http://dx.doi.org/10.1007/978-3-642-12419-8 [Google Scholar]
  3. ‘What is Uranium? How Does it Work?’, World Nuclear Association, London, UK, Updated March, 2014: http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Introduction/What-is-Uranium--How-Does-it-Work-/ (Accessed on 18th July, 2014)
  4. National Research Council of the National Academies, ‘Uranium Mining in Virginia: Scientific, Technical, Environmental, Human Health and Safety, and Regulatory Aspects of Uranium Mining and Processing in Virginia’, The National Academies Press, Washington, DC, USA, 2012 LINK http://www.nap.edu/catalog/13266/uranium-mining-in-virginia-scientific-technical-environmental-human-health-and-safety-and-regulatory-aspects-of-uranium-mining-and-processing-in-virginia [Google Scholar]
  5. Wanty R. B., Miller W. R., Briggs P. H., and McHugh J. B. Rev. Econ. Geol., 1999, 6A, 201 [Google Scholar]
  6. Langmuir D. Geochim. Cosmochim. Acta, 1978, 42, (6A), 547 LINK http://dx.doi.org/10.1016/0016-7037(78)90001-7 [Google Scholar]
  7. Ivanovich M., and Harmon R. S. ‘Uranium Series Disequilibrium: Applications to Environmental Problems’, Clarendon Press, Oxford, UK, 1982 [Google Scholar]
  8. Markich S. J. Sci. World J., 2002, 2, 707 LINK http://dx.doi.org/10.1100/tsw.2002.130 [Google Scholar]
  9. Huang H. H. ‘StabCal Program for Thermodynamic Modelling of Aqueous Systems’, Montana Tech of the University of Montana, Butte, MT, USA, 2010 [Google Scholar]
  10. Davis J. A., and Curtis G. P. ‘Application of Surface Complexation Modeling to Describe Uranium (VI) Adsorption and Retardation at the Uranium Mill Tailings Site at Naturita, Colorado’, NUREG/CR-6820, Washington, USA, 2003 LINK http://www.nrc.gov/reading-rm/doc-collections/nuregs/contract/cr6820/cr6820.pdf [Google Scholar]
  11. Brookins D. G. “Eh-pH Diagrams for Geochemistry”, Springer-Verlag, Berlin, Germany, 1988 LINK http://dx.doi.org/10.1007/978-3-642-73093-1 [Google Scholar]
  12. Leavitt J. J., Howe K. J., and Cabaniss S. E. Appl. Geochem., 2011, 26, (12), 2019 LINK http://dx.doi.org/10.1016/j.apgeochem.2011.06.031 [Google Scholar]
  13. Choi S.-H., Choi M.-S., Park Y.-T., Lee K. P., and Kang H.-D. Radiat. Phys. Chem., 2003, 67, (3–4), 387 LINK http://dx.doi.org/10.1016/S0969-806X(03)00072-0 [Google Scholar]
  14. Kabay N., Hayashi J., Jyo A., and Egawa H. J.Appl. Poly. Sci., 1994, 54, (3), 333 LINK http://dx.doi.org/10.1002/app.1994.070540307 [Google Scholar]
  15. Kabay N., Katakai A., and Sugo T. Radiat. Phys. Chem., 1995, 46, (4–6), 833 LINK http://dx.doi.org/10.1016/0969-806X(95)00272-Y [Google Scholar]
  16. Sadeghi H., Azhdari H., Arabi H., and Moghaddam A. Z. J. Hazard. Mater., 2012, 215–216, 208 LINK http://dx.doi.org/10.1016/j.jhazmat.2012.02.054 [Google Scholar]
  17. Elhefnawy O. A., Zidan W. I., Abo-Aly M. M., Bakier E. M., and Elsayed G. A. J. Radioanal. Nucl. Chem., 2014, 299, (3), 1821 LINK http://dx.doi.org/10.1007/s10967-013-2879-y [Google Scholar]
  18. Guettaf H., Becis A., Ferhat K., Hanou K., Bouchiha D., Yakoubi K., and Ferrad F. Phys. Proc., 2009, 2, (3), 765 LINK http://dx.doi.org/10.1016/j.phpro.2009.11.023 [Google Scholar]
  19. Himsley A. ‘Application of Ion Exchange to Uranium Recovery’, in “Ion Exchange Technology in the Nuclear Fuel Cycle”IAEA-TECDOC-365, International Atomic Energy Agency, Vienna, Austria, 1986 LINK http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/17/054/17054131.pdf [Google Scholar]
  20. Eskandari Nasab M. Fuel, 2014, 116, 595 LINK http://dx.doi.org/10.1016/j.fuel.2013.08.043 [Google Scholar]
  21. Ladeira A. C. Q., and Morais C. A. Min. Eng., 2005, 18, (13–14), 1337 LINK http://dx.doi.org/10.1016/j.mineng.2005.06.012 [Google Scholar]
  22. Song Y., Wang Y., Wang L., Song C., Yang Z. Z., and Zhao A. React. Funct. Polymers, 1999, 39, (3), 245 LINK http://dx.doi.org/10.1016/S1381-5148(98)00009-1 [Google Scholar]
  23. Ladeira A. C. Q., and Gonçalves C. R. J. Hazard. Mater., 2007, 148, (3), 499 LINK http://dx.doi.org/10.1016/j.jhazmat.2007.03.003 [Google Scholar]
  24. Rosenberg E., Hart C., Hughes M., Kailasam V., Allen J., Wood J., and Cross B. ‘Performance Improvements through Structural Design and Comparisons with Polystyrene Resins of Silica Polyamine Composites’, in “67th International Water Conference 2006”, IWC 06-34, 22nd–26th October, 2006, Pittsburgh, Pennsylvania, USA, p. 345 [Google Scholar]
  25. Musić S., Filipović-Vinceković N., and Sekovanić L. Braz. J. Chem. Eng, 2011, 28, (1), 89 LINK http://www.scielo.br/scielo.php?script=sci_abstract&pid=S0104-66322011000100011&lng=en&nrm=iso&tlng=en [Google Scholar]
  26. Allen J. J., Rosenberg E., Johnston E., and Hart C. ACS Appl. Mater. Interfaces, 2012, 4, (3), 1573 LINK http://dx.doi.org/10.1021/am201761m [Google Scholar]
  27. Berlin M., Allen J., Kailasam V., Rosenberg D., and Rosenberg E. Appl. Organomet. Chem., 2011, 25, (7), 530 LINK http://dx.doi.org/10.1002/aoc.1798 [Google Scholar]
  28. Alothman Z. A. Materials, 2012, 5, (12), 2874 LINK http://dx.doi.org/10.3390/ma5122874 [Google Scholar]
  29. Antonietti M., and Göltner C. Max-Planck-Gesellschaft, ‘Lyotropic Liquid-Crystal Phases of Amphiphilic Block Copolymers as Template for the Preparation of Mesoporous Solids’, US Patent 6,054,111; 2000 [Google Scholar]
  30. Shiraishi Y., Nishimura G., Hirai T., and Komasawa I. Ind. Eng. Chem. Res., 2002, 41, (20), 5065 LINK http://dx.doi.org/10.1021/ie020119b [Google Scholar]
  31. Hughes M. A., Nielsen D., Rosenberg E., Gobetto R., Viale A., Burton S. D., and Ferel J. Ind. Eng. Chem. Res., 2006, 45, (19), 6538 LINK http://dx.doi.org/10.1021/ie0601448 [Google Scholar]
  32. Rosenberg E., Miranda P., and Wong Y. O. ‘Oxine Modified Silican Polyamine Composites for the Separation of Gallium from Aluminum, Ferric From Nickel and Copper from Nickel’, US Patent 8,343,446; 2013 and related patents cited therein [Google Scholar]
  33. Rosenberg E., Abd-El-Aziz A. S., Carraher C. E. Jr, Pittman C. U. Jr, and Zeldin M. ‘Silica Polyamine Composites: Advanced Materials for Metal Ion Recovery and Remediation’, in “Macromolecules Containing Metal and Metal-Like Elements: Group IVA Polymers”, eds. Vol. 4John Wiley & Sons, Inc, New Jersey, USA, 2005, p. 51 LINK http://dx.doi.org/10.1002/0471712566.ch4 [Google Scholar]
  34. Kailasam V., and Rosenberg E. Hydrometallurgy, 2012, 129–130, 97 LINK http://dx.doi.org/10.1016/j.hydromet.2012.08.010 [Google Scholar]
  35. Rosenberg E., Kailasam V., and Pinson W. G. ‘Oxyanion Removal and Recovery using Silica Polyamine Composites’, in “74th Annual International Water Conference 2013”, IWC-13-13, 17th–21st November, 2013, Orlando, Florida, USA, p. 211 [Google Scholar]
  36. Kailasam V., Rosenberg E., and Nielsen D. Ind. Eng. Chem. Res., 2009, 48, (8), 3991 LINK http://dx.doi.org/10.1021/ie8016362 [Google Scholar]
  37. Abdel-Fattah T. M., Haggag S. M. S., and Mahmoud M. E. Chem. Eng. J., 2011, 175, 117 LINK http://dx.doi.org/10.1016/j.cej.2011.09.068 [Google Scholar]
  38. Donia A. M., Atia A. A., Daher A. M., Desouky O. A., and Elshehy E. A. Int. J. Min. Proc., 2011, 101, (1–4), 81 LINK http://dx.doi.org/10.1016/j.minpro.2011.07.010 [Google Scholar]
  39. Tashkhourian J., Abdoluosofi L. M., Pakniat M., and Montazerozohori M. J. Hazard. Mater., 2011, 187, (1–3), 75 LINK http://dx.doi.org/10.1016/j.jhazmat.2010.12.053 [Google Scholar]
  40. Sadeghi S., and Sheikhzadeh E. J. Hazard. Mater., 2009, 163, (2–3), 861 LINK http://dx.doi.org/10.1016/j.jhazmat.2008.07.053 [Google Scholar]
  41. Barbette F., Rascalou F., Chollet H., Babouhot J. L., Denat F., and Guilard R. Anal. Chim. Acta, 2004, 502, (2), 179 LINK http://dx.doi.org/10.1016/j.aca.2003.09.065 [Google Scholar]
  42. Hagers D. L. ‘Performance Evaluation for Heavy Metal Ion Removal Using Silica-Polyamine Composite Materials Made with Different Silica Gels and Polyamines’, Masters Dissertation, University of Montana, USA, 1999 LINK http://catalog.lib.umt.edu/vwebv/search?searchType=7&searchId=21977&maxResultsPerPage=20&recCount=20&recPointer=0&resultPointer=0&headingId=2439803 [Google Scholar]
  43. Tutu H., Bakatula E., Dlamini S., Rosenberg E., Kailasam V., and Cukrowska E. M. Water SA, 2013, 39, (4), 437 LINK http://dx.doi.org/10.4314/wsa.v39i4.1 [Google Scholar]
  44. Nielsen D. J. ‘Synthesis and Characterization of Novel Silica Polyamine Composites and their Application to the Reclamation of Hazardous Mining Wastewater and Tailings’, PhD Thesis, University of Montana, USA, 2006 LINK http://catalog.lib.umt.edu/vwebv/search?searchType=7&searchId=21987&maxResultsPerPage=20&recCount=20&recPointer=0&resultPointer=5&headingId=2794199 [Google Scholar]
  45. Johnson B. E., Santschi P. H., Chuang C.-Y., Otosaka S., Addleman R. S., Douglas M., Rutledge R. D., Chouyyok W., Davidson J. D., Fryxell G. E., and Schwantes J. M. Environ. Sci. Technol., 2012, 46, (20), 11251 LINK http://dx.doi.org/10.1021/es204192r [Google Scholar]
  46. Davidson J. D., Wiacek R. J., Burton S., Li X. S., Fryxell G. E., Addleman R. S., Yantasee W., Sangvanich T., and Pattamakomsan K. Inorg. Chem. Commun., 2012, 18, 92 LINK http://dx.doi.org/10.1016/j.inoche.2012.01.025 [Google Scholar]
  47. Lin Y., Fiskum S. K., Yantasee W., Wu H., Mattigod S. V., Vorpagel E., Fryxell G. E., Raymond K. N., and Xu J. Environ. Sci. Technol., 2005, 39, (5), 1332 LINK http://dx.doi.org/10.1021/es049169t [Google Scholar]
  48. Jung Y., Kim S., Park S.-J., and Kim J. M. Colloid. Surface. A: Physicochem. Eng. Aspects, 2008, 313–314, 162 LINK http://dx.doi.org/10.1016/j.colsurfa.2007.04.087 [Google Scholar]
  49. Manos M. J., and Kanatzidis M. G. J. Am. Chem. Soc., 2009, 131, (18), 6599 LINK http://dx.doi.org/10.1021/ja900977p [Google Scholar]
  50. Manos M. J., and Kanatzidis M. G. J. Am. Chem. Soc., 2012, 134, (39), 16441 LINK http://dx.doi.org/10.1021/ja308028n [Google Scholar]
  51. Manos M. J., Ding N., and Kanatzidis M. G. Proc. Natl. Acad. Sci. USA, 2008, 105, (10), 3696 LINK http://dx.doi.org/10.1073/pnas.0711528105 [Google Scholar]
  52. ‘Application of Ion Exchange Processes for the Treatment of Radioactive Waste and Management of Spent Ion Exchangers’, Technical Reports Series No. 408, International Atomic Energy Agency, Vienna, Austria, 2002 LINK http://www-pub.iaea.org/MTCD/publications/PDF/TRS408_scr.pdf [Google Scholar]
  53. Allen J., Berlin M., Hughes M., Johnston E., Kailasam V., Rosenberg E., Sardot T., Wood J., and Hart C. Mater. Chem. Phys., 2011, 126, (3), 973 LINK http://dx.doi.org/10.1016/j.matchemphys.2010.11.053 [Google Scholar]
  54. Zagorodni A. A. “Ion Exchange Materials: Properties and Applications”, Elsevier, Amsterdam, The Netherlands, 2007 [Google Scholar]
  55. Helfferich F. G. “Ion Exchange”, McGraw-Hill, New York, USA, 1962 [Google Scholar]
  56. Inamuddin I., and Luqman M. “Ion Exchange Technology I: Theory and Materials”, eds. Springer, Dordrecht, The Netherlands, 2012 LINK http://dx.doi.org/10.1007/978-94-007-1700-8 [Google Scholar]
  57. Inamuddin I., and Luqman M. “Ion Exchange Technology II: Applications”, eds. Springer, Dordrecht, The Netherlands, 2012 LINK http://dx.doi.org/10.1007/978-94-007-4026-6 [Google Scholar]
  58. Harland C. E. “Ion Exchange Theory and Practice,” 2nd Edition, Royal Society of Chemistry, London, UK, 1994 LINK http://dx.doi.org/10.1039/9781847551184 [Google Scholar]
  59. Strathmann H. “Ion-Exchange Membrane Separation Processes”, ed. Membrane Science and Technology, Vol. 9, Elsevier, Amsterdam, The Netherlands, 2004 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651316X690178
Loading
/content/journals/10.1595/205651316X690178
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error