Skip to content
Volume 60, Issue 2
  • ISSN: 2056-5135


High-surface area γ-alumina is industrially used as a catalyst support. Catalytically active elements are doped onto the support, where they can bind to AlO, AlO or AlO sites on the surface. Pretreating the surface with alkaline earth oxides can alter the availability of these surface sites, hence affecting the catalytic activity. The surface binding sites of strontium oxide (SrO) on γ-alumina were previously unknown. Direct 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) could not detect AlO sites at 9.4 T, so 1H–27Al cross-polarisation (CP) MAS NMR was used to preferentially select the surface environment signals. We directly observed the three surface environments on dehydrated γ-alumina as a function of SrO impregnation up to 4 wt% SrO. We found that Sr2+ preferentially binds to AlO and AlO surface sites. 1H MAS NMR revealed SrO impregnation causes a reduction in the terminal (−0.3 ppm) and bridging (2.2 ppm) hydroxyl environments, as well as the promotion of a new peak in between these sites, at 0.5 ppm. By using 1H–27Al CP/MAS NMR the relative proportions of surface sites on γ-alumina can be determined, allowing an optimal level of SrO doping that can saturate all the AlO sites. Importantly, this provides a method of subsequently depositing catalytically active elements on just the AlO or AlO sites, which can provide a different catalytic activity or stability compared to the AlO binding site.


Article metrics loading...

Loading full text...

Full text loading...



  1. Wefers K., and Misra C. “Oxides and Hydroxides of Aluminum”, Alcoa Technical Paper No. 19, Aluminum Company of America, USA, 1987 LINK [Google Scholar]
  2. Busca G., and Jentoft F. C. ‘Structural, Surface, and Catalytic Properties of Aluminas’ in “Advances in Catalysis”, ed. Volume 57, Academic Press, USA, 2014, pp. 319404 [Google Scholar]
  3. Trueba M., and Trasatti S. P. Eur. J. Inorg. Chem., 2005, (17), 3393 LINK [Google Scholar]
  4. Hargreaves J. S. J., and Munnoch A. L. Catal. Sci. Technol., 2013, 3, (5), 1165 LINK [Google Scholar]
  5. Keyvanloo K., Horton J. B., Hecker W. C., and Argyle M. D. Catal. Sci. Technol., 2014, 4, (12), 4289 LINK [Google Scholar]
  6. Lucarelli C., Albonetti S., Vaccari A., Resini C., Taillades G., Roziere J., Liew K.-E., Ohnesorge A., Wolff C., Gabellini I., and Wails D. Catal. Today, 2011, 175, (1), 504 LINK [Google Scholar]
  7. Novák V., Kočí P., Marek M., Štěpánek F., Blanco-García P., and Jones G. Catal. Today, 2012, 188, (1), 62 LINK [Google Scholar]
  8. Chen H.-Y., and Chang H.-L. Johnson Matthey Technol. Rev., 2015, 59, (1), 64 LINK [Google Scholar]
  9. Kašpar J., Fornasiero P., and Hickey N. Catal. Today, 2003, 77, (4), 419 LINK [Google Scholar]
  10. Yi C.-W., Kwak J. H., Peden C. H. F., Wang C, and Szanyi J. J. Phys. Chem. C, 2007, 111, (41), 14942 LINK [Google Scholar]
  11. Verrier C., Kwak J. H., Kim D. H., Peden C. H. F., and Szanyi J. Catal. Today, 2008, 136, (1–2), 121 LINK [Google Scholar]
  12. Taoufik M., Szeto K. C., Merle N., Rosal I. D., Maron L., Trébosc J., Tricot G., Gauvin R. M., and Delevoye L. Chem. Eur. J., 2014, 20, (14), 4038 LINK [Google Scholar]
  13. Vega A. J., and Wasylishen R. E. ‘Quadrupolar Nuclei in Solids’, in “eMagRes”, ed. John Wiley & Sons, Inc, Hoboken, New Jersey, USA, 2010 LINK [Google Scholar]
  14. Smith M. E., and van Eck E. R. H. Prog. Nucl. Magn. Reson. Spectrosc., 1999, 34, (2), 159 LINK [Google Scholar]
  15. Nortier P., Fourre P., Saad A. B. M., Saur O., and Lavalley J. C. Appl. Catal., 1990, 61, (1), 141 LINK [Google Scholar]
  16. Huggins B. A., and Ellis P. D. J. Am. Chem. Soc., 1992, 114, (6), 2098 LINK ja00032a025 [Google Scholar]
  17. Fitzgerald J. J., Piedra G., Dec S. F., Seger M., and Maciel G. E. J. Am. Chem. Soc., 1997, 119, (33), 7832 LINK [Google Scholar]
  18. Morris H. D., and Ellis P. D. J. Am. Chem. Soc., 1989, 111, (16), 6045 LINK [Google Scholar]
  19. Coster D. , Blumenfeld A. L., and Fripiat J. J. J. Phys. Chem., 1994, 98, (24), 6201 LINK [Google Scholar]
  20. Vitzthum V., Miéville P., Carnevale D., Caporini M. A., Gajan D., Copéret C., Lelli M., Zagdoun A., Rossini A. J., Lesage A., Emsley L., and Bodenhausen G. Chem. Commun., 2012, 48, (14), 1988 LINK [Google Scholar]
  21. Lee D., Duong N. T., Lafon O., and De Paëpe G. J. Phys. Chem. C, 2014, 118, (43), 25065 LINK [Google Scholar]
  22. Wischert R., Florian P., Copéret C., Massiot D., and Sautet P. J. Phys. Chem. C, 2014, 118, (28), 15292 LINK [Google Scholar]
  23. Rozita Y., Brydson R., Comyn T. P., Scott A. J., Hammond C., Brown A., Chauruka S., Hassanpour A., Young N. P., Kirkland A. I., Sawada H., and Smith R. I. ChemCatChem, 2013, 5, (9), 2695 LINK [Google Scholar]
  24. Rinaldi R., Fujiwara F. Y., Hölderich W., and Schuchardt U. J. Catal., 2006, 244, (1), 92 LINK [Google Scholar]
  25. Wagner G. W., and Fry R. A. J. Phys. Chem. C, 2009, 113, (30), 13352 LINK [Google Scholar]
  26. Kwak J. H., Hu J., Mei D., Yi C.-W., Kim D. H., Peden C. H. F., Allard L. F., and Szanyi J. Science, 2009, 325, (5948), 1670 LINK [Google Scholar]
  27. Kwak J. H., Hu J. Z., Kim D. H., Szanyi J., and Peden C. H. F. J. Catal., 2007, 251, (1), 189 LINK [Google Scholar]
  28. Peri J. B. J. Phys. Chem., 1965, 69, (1), 220 LINK [Google Scholar]
  29. Knözinger H., and Ratnasamy P. Catal. Rev.: Sci. Eng., 1978, 17, (1), 31 LINK [Google Scholar]
  30. Tsyganenko A. A., and Mardilovich P. P. J. Chem. Soc., Faraday Trans., 1996, 92, (23), 4843 LINK [Google Scholar]
  31. Digne M., Sautet P., Raybaud P., Euzen P., and Toulhoat H. J. Catal., 2004, 226, (1), 54 LINK [Google Scholar]
  32. Ferreira A. R., Küçükbenli E., de Gironcoli S., Souza W. F., Chiaro S. S. X., Konstantinova E., and Leitão A. A. Chem. Phys., 2013, 423, 62 LINK [Google Scholar]
  33. Decanio E. C. , Edwards J. C., and Bruno J. W. J. Catal., 1994, 148, (1), 76 LINK [Google Scholar]
  34. Deng F., Wang G., Du Y., Ye C., Kong Y., and Li X. Solid State Nucl. Magn. Reson., 1997, 7, (4), 281 LINK [Google Scholar]
  35. Delgado M., Delbecq F., Santini C. C., Lefebvre F., Norsic S., Putaj P., Sautet P., and Basset J.-M. J. Phys. Chem. C, 2012, 116, (1), 834 LINK [Google Scholar]
  36. Huittinen N., Sarv P., and Lehto J. J. Colloid Interface Sci., 2011, 361, (1), 252 LINK [Google Scholar]
  37. Hahn E. L., and Maxwell D. E. Phys. Rev., 1951, 84, (6), 1246 LINK [Google Scholar]
  38. Massiot D., Bessada C., Coutures J. P., and Taulelle F. J. Magn. Reson., 1990, 90, (2), 231 LINK [Google Scholar]
  39. Hartmann S. R., and Hahn E. L. Phys. Rev., 1962, 128, (5), 2042 LINK [Google Scholar]
  40. Vega A. J. J. Magn. Reson., 1992, 96, (1), 50 LINK [Google Scholar]
  41. Hayashi S. Solid State Nucl. Magn. Reson., 1994, 3, (2), 93 LINK [Google Scholar]
  42. Ashbrook S. E., and Wimperis S. J. Chem. Phys., 2004, 120, (6), 2719 LINK [Google Scholar]
  43. Chupas P. J., and Grey C. P. J. Catal., 2004, 224, (1), 69 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error