Skip to content
1887
Volume 60, Issue 2
  • ISSN: 2056-5135

Abstract

The application of three-dimensional electrical capacitance tomography (3D-ECT) for the monitoring of a hard boundary or interface has been investigated using imaged phantoms that simulate real-life processes. A cylinder-in-tube phantom manufactured from polyethylene (PE), a low di-electric and non-conductive material, was imaged using the linear back projection (LBP) algorithm with the larger tube immersed at varying intervals to test the ability of the technique to image interfaces axially through the sensor. The interface between PE and air is clearly imaged and correlates to the known tube penetration within the sensor. The cylinder phantom is imaged in the centre of the sensor; however, the reduction in measurement density towards the centre of the ECT sensor results in reduced accuracy. A thresholding method, previously applied to binary systems to improve the imaged accuracy of a hard boundary between two separate phases, has been applied to the 3D-ECT tomograms that represent the PE phantom. This approach has been shown to improve the accuracy of the acquired image of a cylinder of air within a non-conductive PE tube.

Loading

Article metrics loading...

/content/journals/10.1595/205651316X691537
2016-01-01
2024-02-27
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/60/2/JMTR-60-2-Clark.html?itemId=/content/journals/10.1595/205651316X691537&mimeType=html&fmt=ahah

References

  1. Peng L., Mou C., Yao D., Zhang B., and Xiao D. Flow Meas. Instrum., 2005, 16, (2–3), 169 LINK http://dx.doi.org/10.1016/j.flowmeasinst.2005.02.015 [Google Scholar]
  2. Xu H., Yang G., and Wang S. ‘Effect of Axial Guard Electrodes on Sensing Field of Capacitance Tomographic Sensor’, in “Proceedings of 1st World Congress on Industrial Process Tomography”, Buxton, UK, 14th–17th April, 1999, pp. 348352 LINK http://www.isipt.org/world-congress/1/54.html [Google Scholar]
  3. Jaworski A. J., and Bolton G. T. Meas. Sci. Technol., 2000, 11, (6), 743 LINK http://dx.doi.org/10.1088/0957-0233/11/6/318 [Google Scholar]
  4. Hamidipour M., and Larachi F. Chem. Eng. J., 2010, 165, (1), 310 LINK http://dx.doi.org/10.1016/j.cej.2010.08.058 [Google Scholar]
  5. Clark P. J., Tsoligkas A. N., Simmons M. J. H., Robbins P. T., and Stitt E. H. Meas. Sci. Technol., 2016, 27, (2), 025401 LINK http://dx.doi.org/10.1088/0957-0233/27/2/025401 [Google Scholar]
  6. Clark P. J., Tsoligkas A. N., Simmons M. J. H., Blackburn S., and Stitt H. ‘Detection of Phase and Other Sharp Boundaries using Electrical Capacitance Tomography’ in “Proceedings of 7th World Congress on Industrial Process Tomography”, Krakow, Poland, 2nd–5th September, 2013, pp. 799808 LINK http://www.isipt.org/world-congress/7/922.html [Google Scholar]
  7. Al Hosani E., Zhang M., and Soleimani M. IEEE Sens. J., 2015, 15, (11), 6089 LINK http://dx.doi.org/10.1109/JSEN.2015.2453361 [Google Scholar]
  8. Evangelidis M., Ma L., and Soleimani M. ‘Pipeline Inspection Using High Resolution Electrical Capacitance Tomography’, in ‘Proceedings of 7th World Congress on Industrial Process Tomography’, Krakow, Poland, 2nd–5th September, 2013, pp. 556 LINK http://www.isipt.org/world-congress/7/893.html [Google Scholar]
  9. Wajman R., Banasiak R., Mazurkiewicz L., Dyakowski T., and Sankowski D. Meas. Sci. Technol., 2006, 17, (8), 2113 LINK http://dx.doi.org/10.1088/0957-0233/17/8/009 [Google Scholar]
  10. Rimpiläinen V., Heikkinen L. M., and Vauhkonen M. Chem. Eng. Sci., 2012, 75, 220 LINK http://dx.doi.org/10.1016/j.ces.2012.03.028 [Google Scholar]
  11. Warsito W., and Fan L.-S. Chem. Eng. Proc.: Proc. Intens., 2003, 42, (8–9), 663 LINK http://dx.doi.org/10.1016/S0255-2701(02)00204-0 [Google Scholar]
  12. Warsito W., and Fan L.-S. ‘Development of 3-Dimensional Electrical Capacitance Tomography Based on Neural Network Multi-Criterion Optimization Image Reconstruction’, in “Proceedings of 3rd World Congress on Industrial Process Tomography”, Banff, Canada, 2nd–5th September, 2003, pp. 391396 LINK http://www.isipt.org/world-congress/3/253.html [Google Scholar]
  13. Warsito W., and Fan L.-S. Chem. Eng. Sci., 2005, 60, (22), 6073 LINK http://dx.doi.org/10.1016/j.ces.2005.01.033 [Google Scholar]
  14. Chandrasekera T. C., Wang A., Holland D. J., Marashdeh Q., Pore M., Wang F., Sederman A. J., Fan L. S., Gladden L. F., and Dennis J. S. Powder Technol., 2012, 227, 86 LINK http://dx.doi.org/10.1016/j.powtec.2012.03.005 [Google Scholar]
  15. Soleimani M., Mitchell C. N., Banasiak R., Wajman R., and Adler A. Prog. Electromagn. Res., 2009, 90, 171 LINK http://dx.doi.org/10.2528/PIER09010202 [Google Scholar]
  16. Banasiak R., Wajman R., Sankowski D., and Soleimani M. Prog. Electromagn. Res., 2010, 100, 219 LINK http://dx.doi.org/10.2528/PIER09111201 [Google Scholar]
  17. Ye Z., Wei H. Y., and Soleimani M. Measurement, 2015, 61, 270 LINK http://dx.doi.org/10.1016/j.measurement.2014.10.060 [Google Scholar]
  18. Clark P. J., Ramskill N. P., Simmons M. J., York A., Gladden L. F., and Stitt E. H. ‘Validation of Electrical Capacitance Tomography Drying Measurements using Magnetic Resonance Imaging’, in 7th International Symposium on Process Tomography, Dresden, Germany, 1st–3rd September, 2015 [Google Scholar]
  19. Wei K., Qiu C., Soleimani M., and Primrose K. Flow Meas. Instrum., 2015, 46, (Part B), 292 LINK http://dx.doi.org/10.1016/j.flowmeasinst.2015.08.001 [Google Scholar]
  20. Yang W. Q., and Peng L. Meas. Sci. Technol., 2003, 14, (1), R1 LINK http://dx.doi.org/10.1088/0957-0233/14/1/201 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651316X691537
Loading
/content/journals/10.1595/205651316X691537
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error