Skip to content
Volume 60, Issue 3
  • ISSN: 2056-5135


Increasingly demanding exhaust emissions regulations require that automotive three-way catalysts (TWC) must exhibit excellent catalytic activity and durability. Thus, developing TWC based on an accurate understanding of deactivation mechanisms is critical. This work briefly reviews thermally induced deactivation mechanisms, which are the major contributor to deactivation, and provides an overview of the common strategies for improving durability and preventing deactivation. It highlights the interaction of metals with supports and the diffusion inhibition of atoms and crystallites in both washcoats and metal nanoparticles and concludes with some recommendations for future research directions towards ever more challenging catalyst manufacture to meet increasing durability requirements both now and in the future.


Article metrics loading...

Loading full text...

Full text loading...



  1. Twigg M. V. Catal. Today, 2011, 163, (1), 33 LINK [Google Scholar]
  2. Twigg M. V. Platinum Metals Rev., 2011, 55, (1), 43 LINK [Google Scholar]
  3. Kašpar J., Fornasiero P., and Hickey N. Catal. Today, 2003, 77, (4), 419 LINK [Google Scholar]
  4. Fathali A., Olsson L., Ekström F., Laurell M., and Andersson B. Top. Catal., 2013, 56, (1), 323 LINK [Google Scholar]
  5. Fernandes D. M., Scofield C. F., Neto A. A., Cardoso M. J. B., and Zotin F. M. Z. Chem. Eng. J., 2010, 160, (1), 85 LINK [Google Scholar]
  6. Matsumoto S. Catal Today, 2004, 90, (3–4), 183 LINK [Google Scholar]
  7. Lassi U. ‘Deactivation Correlations of Pd/Rh Three-way Catalysts Designed for Euro IV Emission Limits: Effect of Ageing Atmosphere, Temperature and Time’, PhD Thesis, Department of Process and Environmental Engineering, University of Oulu, Finland, 2003 LINK [Google Scholar]
  8. Balducci G., Fornasiero P., Monte R. D., Kaspar J., Meriani S., and Graziani M. Catal. Lett., 1995, 33, (1), 193 LINK [Google Scholar]
  9. Fernandes D. M., Scofield C. F., Neto A. A., Cardoso M. J. B., and Zotin F. M. Z. Process Saf. Environ., 2009, 87, (5), 315 LINK [Google Scholar]
  10. Zotin F. M. Z., da Fonseca Martins Gomes O., de Oliveira C. H., Neto A. A., and Cardoso M. J. B. Catal Today, 2005, 107–108, 157 LINK [Google Scholar]
  11. Badkar P. A., and Bailey J. E. J. Mater. Sci., 1976, 11, (10), 1794 LINK [Google Scholar]
  12. Kolli T., Rahkamaa-Tolonen K., Lassi U., Savimäki A., and Keiski R. L. Catal Today, 2005, 100, (3–4), 297 LINK [Google Scholar]
  13. Jia L., Shen M., and Wang J. Surf. Coat. Tech., 2007, 201, (16–17), 7159 LINK [Google Scholar]
  14. Morikawa A., Suzuki T., Kanazawa T., Kikuta K., Suda A., and Shinjo H. Appl. Catal. B: Eviron., 2008, 78, (3–4), 210 LINK [Google Scholar]
  15. Prasad D. H., Park S. Y., Ji H.-I., Kim H.-R., Son J.-W., Kim B.-K., Lee H.-W., and Lee J.-H. J. Phys. Chem. C, 2012, 116, (5), 3467 LINK [Google Scholar]
  16. Guo J., Shi Z., Wu D., Yin H., Gong M., and Chen Y. J. Alloy Compd., 2015, 621, 104 LINK [Google Scholar]
  17. Shen M., Yang M., Wang J., Wen J., Zhao M., and Wang W. J. Phys. Chem. C, 2009, 113, (8), 3212 LINK [Google Scholar]
  18. Marchionni V., Newton M. A., Kambolis A., Matam S. K., Weidenkaff A., and Ferri D. Catal. Today, 2014, 229, 80 LINK [Google Scholar]
  19. Bartholomew C. H. Appl. Catal. A: Gen., 2001, 212, (1–2), 17 LINK [Google Scholar]
  20. Bowker M. Nature Mater., 2002, 1, (4), 205 LINK [Google Scholar]
  21. Buffat Ph., and Borel J.-P. Phys. Rev. A, 1976, 13, (6), 2287 LINK [Google Scholar]
  22. Forzatti P., and Lietti L. Catal Today, 1999, 52, (2–3), 165 LINK [Google Scholar]
  23. Moulijn J. A., van Diepen A. E., and Kapteijn F. Appl. Catal. A: Gen., 2001, 212, (1–2), 3 LINK [Google Scholar]
  24. Cao A., and Veser G. Nature Mater., 2010, 9, (1), 75 LINK [Google Scholar]
  25. Yan X., Wang X., Tang Y., Ma G., Zou S., Li R., Peng X., Dai S., and Fan J. Chem. Mater., 2013, 25, (9), 1556 LINK [Google Scholar]
  26. Zou W., and Gonzalez R. D. Appl. Catal. A: Gen., 1993, 102, (2), 181 LINK [Google Scholar]
  27. Shinjoh H., Hatanaka M., Nagai Y., Tanabe T., Takahashi N., Yoshida T., and Miyake Y. Top. Catal., 2009, 52, (13–20), 1967 LINK [Google Scholar]
  28. Cargnello M., Jaén J. J. D., Hernández Garrido J. C., Bakhmutsky K., Montini T., Calvino Gámez J. J., Gorte R. J., and Fornasiero P. Science, 2012, 337, (6095), 713 LINK [Google Scholar]
  29. Vedyagin A. A., Gavrilov M. S., Volodin A. M., Stoyanovskii V. O., Slavinskaya E. M., Mishakov I. V., and Shubin Y. V. Top. Catal., 2013, 56, (11), 1008 LINK [Google Scholar]
  30. Lu J., Fu B., Kung M. C., Xiao G., Elam J. W., Kung H. H., and Stair P. C. Science, 2012, 335, (6073), 1205 LINK [Google Scholar]
  31. Hinokuma S., Fujii H., Katsuhara Y., Ikeue K., and Machida M. Catal. Sci. Technol., 2014, 4, (9), 2990 LINK [Google Scholar]
  32. Shinjoh H., Muraki H., and Fujitani Y. Stud. Surf. Sci. Catal., 1991, 71, 617 LINK [Google Scholar]
  33. Goldsmith B. R., Sanderson E. D., Ouyang R., and Li W.-X. J. Phys. Chem. C, 2014, 118, (18), 9588 LINK [Google Scholar]
  34. Newton M. A., Belver-Coldeira C., Martínez-Arias A., and Fernández-García M. Nature Mater., 2007, 6, (7), 528 LINK [Google Scholar]
  35. Farrauto R. J., Hobson M. C., Kennelly T., and Waterman E. M. Appl. Catal. A: Gen., 1992, 81, (2), 227 LINK [Google Scholar]
  36. Dent A. J., Evans J., Fiddy S. G., Jyoti B., Newton M. A., and Tromp M. Angew. Chem. Int. Ed., 2007, 46, (28), 5356 LINK [Google Scholar]
  37. Bernal S., Blanco G., Calvino J. J., Gatica J. M., Pérez Omil J. A., and Pintado J. M. Top. Catal., 2004, 28, (1), 31 LINK [Google Scholar]
  38. Kašpar J., Fornasiero P., and Hickey N. Catal. Today, 2003, 77, (4), 419 LINK [Google Scholar]
  39. Gremminger A. T., de Carvalho H. W. P., Popescu R., Grunwaldt J.-D., and Deutschmann O. Catal. Today, 2015, 258, (2), 470 LINK [Google Scholar]
  40. Birgersson H., Boutonnet M., Järås S., and Eriksson L. Top. Catal., 2004, 30, (1), 433 LINK [Google Scholar]
  41. Lieske H., Lietz G., Spindler H., and Völter J. J. Catal., 1983, 81, (1), 8 LINK [Google Scholar]
  42. Christou S. Y., Gåsste J., Karlsson H. L., Fierro J. L. G., and Efstathiou A. M. Top. Catal., 2009, 52, (13–20), 2029 LINK [Google Scholar]
  43. Hatanaka M., Takahashi N., Takahashi N., Tanabe T., Nagai Y., Suda A., and Shinjoh H. J. Catal., 2009, 266, (2), 182 LINK [Google Scholar]
  44. Nagai Y., Dohmae K., Ikeda Y., Takagi N., Tanabe T., Hara N., Guilera G., Pascarelli S., Newton M. A., Kuno O., Jiang H., Shinjoh H., and Matsumoto S. Angew. Chem. Int. Ed., 2008, 47, (48), 9303 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error