Skip to content
1887
Volume 61, Issue 1
  • ISSN: 2056-5135
  • oa Iridium Coating: Processes, Properties and Application. Part I

    Processes for protection in high-temperature environments against oxidation and corrosion

  • Authors: Wang-ping Wu1 and Zhao-feng Chen2
  • Affiliations: 1 School of Mechanical Engineering, Institute of Energy Chemical Equipment and Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou UniversityChangzhou 213164P.R. China 2 International Laboratory for Insulation and Energy Efficiency materials, College of Material Science and Technology, Nanjing University of Aeronautics and AstronauticsNanjing 210016P.R. China
  • Source: Johnson Matthey Technology Review, Volume 61, Issue 1, Jan 2017, p. 16 - 28
  • DOI: https://doi.org/10.1595/205651317X693606
    • Published online: 01 Jan 2017

Abstract

The successful use in rocket engines of iridium as a barrier coating is an important area of high-temperature application. The Ir coating must be continuous and dense in order to protect the underlying material from corrosion and oxidation. The microstructure and morphology of the coating can be effectively controlled by varying the deposition conditions. The microstructure has an important influence on the physical and mechanical properties of the coating. A number of deposition processes, which have different conditions and requirements, have been employed to produce Ir coatings on various substrate materials. Part I of this paper presents the introduction and reviews the different deposition processes, while Part II will deal with texture and structure evolution, mechanical properties, growth mechanisms and applications of Ir coatings. The mechanisms of micropore formation after high-temperature treatment will also be investigated in some detail.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X693606
2017-01-01
2025-01-23
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/61/1/JMTR-61-1-Wu-pt1.html?itemId=/content/journals/10.1595/205651317X693606&mimeType=html&fmt=ahah

References

  1. C. Couderc, Platinum Metals Rev., 2010, 54, (3), 186 LINK http://www.technology.matthey.com/article/54/3/186-191/ [Google Scholar]
  2. J. Goswami, C.-G. Wang, P. Majhi, Y.-W. Shin, S. K. Dey, J. Mater. Res., 2001, 16, (8), 2192 LINK http://dx.doi.org/10.1557/JMR.2001.0300 [Google Scholar]
  3. F. D. Richardson, Platinum Metals Rev., 1958, 2, (3), 83 LINK http://www.technology.matthey.com/article/2/3/83-85/ [Google Scholar]
  4. J. R. Handley, Platinum Metals Rev., 1986, 30, (1), 12 LINK http://www.technology.matthey.com/article/30/1/12-13/ [Google Scholar]
  5. E. K. Ohriner, Platinum Metals Rev., 2008, 52, (3), 186 LINK http://www.technology.matthey.com/article/52/3/186-197/ [Google Scholar]
  6. Z. F. Chen, W. P. Wu, X. N. Cong, J. Mater. Sci. Technol., 2014, 30, (3), 268 LINK http://dx.doi.org/10.1016/j.jmst.2013.06.002 [Google Scholar]
  7. L. Snell, A. Nelson, P. Molian, Carbon, 2001, 39, (7), 991 LINK http://dx.doi.org/10.1016/S0008-6223(00)00200-1 [Google Scholar]
  8. C. A. Brookes, J. H. Greenwood, J. L. Routbort, J. Appl. Phys., 1968, 39, (5), 2391 LINK http://dx.doi.org/10.1063/1.1656565 [Google Scholar]
  9. R. Weiland, D. F. Lupton, B. Fischer, J. Merker, C. Scheckenbach, J. Witte, Platinum Metals Rev., 2006, 50, (4), 158 LINK http://www.technology.matthey.com/article/50/4/158-170/ [Google Scholar]
  10. R. W. Douglass, R. I. Jaffee, Proc. ASTM., 1962, 62, 627 LINK https://www.astm.org/DIGITAL_LIBRARY/STP/MMR/PAGES/PRO1962-62.htm [Google Scholar]
  11. B. L. Mordike, C. A. Brookes, Platinum Metals Rev., 1960, 4, (3), 94 LINK http://www.technology.matthey.com/article/4/3/94-99/ [Google Scholar]
  12. Z. F. Chen, W. P. Wu, L. B. Wang, Y. Zhang, Int. J. Fract., 2008, 153, (2), 185 LINK http://dx.doi.org/10.1007/s10704-009-9310-2 [Google Scholar]
  13. Y. F. Hua, L. T. Zhang, L. F. Cheng, W. B. Yang, Mater. Sci. Eng. B, 2005, 121, (1–2), 156 LINK http://dx.doi.org/10.1016/j.mseb.2005.03.020 [Google Scholar]
  14. C. Gandhi, M. F. Ashby, Scripta Metall., 1979, 13, (5), 371 LINK http://dx.doi.org/10.1016/0036-9748(79)90227-8 [Google Scholar]
  15. P. Panfilov, J. Mater. Sci., 2007, 42, (19), 8230 LINK http://dx.doi.org/10.1007/s10853-007-1722-7 [Google Scholar]
  16. P. Panfilov, A. Yermakov, Platinum Metals Rev., 2001, 45, (4), 176 LINK http://www.technology.matthey.com/article/45/4/176-178-2/ [Google Scholar]
  17. P. Panfilov, A. Yermakov, V. Dmitriev, N. Timofeev, Platinum Metals Rev., 1991, 35, (4), 196 LINK http://www.technology.matthey.com/article/35/4/196-200/ [Google Scholar]
  18. P. Panfilov, A. Yermakov, Int. J. Fract., 2004, 128, (1), 147 LINK http://dx.doi.org/10.1023/B:FRAC.0000040977.26875.1f [Google Scholar]
  19. P. Panfilov, A. Yermakov, J. Mater. Sci., 2004, 39, (14), 4543 LINK http://dx.doi.org/10.1023/B:JMSC.0000034148.03387.71 [Google Scholar]
  20. P. Panfilov, J. Mater. Sci., 2005, 40, (22), 5983 LINK http://dx.doi.org/10.1007/s10853-005-1296-1 [Google Scholar]
  21. E. P. George, C. G. McKamey, E. K. Ohriner, E. H. Lee, Mater. Sci. Eng. A, 2001, 319–321, 466 LINK http://dx.doi.org/10.1016/S0921-5093(01)01082-6 [Google Scholar]
  22. R. E. MacFarlane, J. A. Rayne, C. K. Jones, Phys. Lett., 1966, 20, (3), 234 LINK http://dx.doi.org/10.1016/0031-9163(66)90340-4 [Google Scholar]
  23. C. N. Reid, J. L. Routbort, Metall. Trans., 1972, 3, (8), 2257 LINK http://dx.doi.org/10.1007/BF02643240 [Google Scholar]
  24. L. Heatherly, E. P. George, Acta Mater., 2001, 49, (2), 289 LINK http://dx.doi.org/10.1016/S1359-6454(00)00313-X [Google Scholar]
  25. C. L. White, C. T. Liu, Scripta Metall., 1978, 12, (8), 727 LINK http://dx.doi.org/10.1016/0036-9748(78)90316-2 [Google Scholar]
  26. C. L. White, R. E. Clausing, L. Heatherly, Metall. Trans. A, 1979, 10, (6), 683 LINK http://dx.doi.org/10.1007/BF02658389 [Google Scholar]
  27. L. Heatherly, E. P. George, Acta Mater., 2001, 49, (2), 289 LINK http://dx.doi.org/10.1016/S1359-6454(00)00313-X [Google Scholar]
  28. A. V. Yermakov, V. M. Koltygin, E. V. Fatyushina, Platinum Metals Rev., 1992, 36, (3), 146 LINK http://www.technology.matthey.com/article/36/3/146-149/ [Google Scholar]
  29. A. Yermakov, P. Panfilov, R. Adamesku, J. Mater. Sci. Lett., 1990, 9, (6), 696 LINK http://dx.doi.org/10.1007/BF00721807 [Google Scholar]
  30. A. V. Ermakov, S. M. Klotsman, V. G. Pushin, A. N. Timofeev, V. N. Kaigorodov, P. Ye. Panfilov, L. I. Yurchenko, Scripta Mater., 1999, 42, (2), 209 LINK http://dx.doi.org/10.1016/S1359-6462(99)00323-1 [Google Scholar]
  31. S. S. Hecker, D. L. Rohr, D. F. Stein, Metall. Trans. A, 1978, 9, (4), 481 LINK http://dx.doi.org/10.1007/BF02646403 [Google Scholar]
  32. S. P. Lynch, Scripta Mater., 2007, 57, (2), 85 LINK http://dx.doi.org/10.1016/j.scriptamat.2007.03.039 [Google Scholar]
  33. T. J. Balk, K. J. Hemker, Phil. Mag. A, 2001, 81, (6), 1507 LINK http://dx.doi.org/10.1080/01418610108214360 [Google Scholar]
  34. J. M. MacLaren, S. Crampin, D. D. Vvedensky, M. E. Eberhart, Phys. Rev. Lett., 1989, 63, (23), 2586 LINK http://dx.doi.org/10.1103/PhysRevLett.63.2586 [Google Scholar]
  35. S. Crampin, K. Hampel, D. D. Vvedensky, J. M. MacLaren, J. Mater. Res., 1990, 5, (10), 2107 LINK http://dx.doi.org/10.1557/JMR.1990.2107 [Google Scholar]
  36. M. J. Cawkwell, D. Nguyen-Manh, C. Woodward, D. G. Pettifor, V. Vitek, Science, 2005, 309, (5737), 1059 LINK http://dx.doi.org/10.1126/science.1114704 [Google Scholar]
  37. C. T. Liu, H. Inouye, “Development and Characterization of an Improved Ir–0.3% W Alloy for Space Radioisotopic Heat Sources”, ORNL-5290, Oak Ridge National Laboratory, Tennessee, USA, 1977 LINK http://www.osti.gov/scitech/servlets/purl/5270002/ [Google Scholar]
  38. E. A. Franco-Ferreira, G. M. Goodwin, T. G. George, G. H. Rinehart, Platinum Metals Rev., 1997, 41, (4), 154 LINK http://www.technology.matthey.com/article/41/4/154-163/ [Google Scholar]
  39. C. L. White, C. T. Liu, Acta Metall., 1981, 29, (2), 301 LINK http://dx.doi.org/10.1016/0001-6160(81)90157-7 [Google Scholar]
  40. C. T. Liu, H. Inouye, A. C. Schaffhauser, Metall. Trans. A, 1981, 12, (6), 993 LINK http://dx.doi.org/10.1007/BF02643480 [Google Scholar]
  41. C. L. White, L. Heatherly, R. A. Padgett, Acta Metall., 1983, 31, (1), 111 LINK http://dx.doi.org/10.1016/0001-6160(83)90070-6 [Google Scholar]
  42. E. P. George, C. G. McKamey, E. K. Ohriner, E. H. Lee, Mater. Sci. Eng.: A, 2001, 319–321, 466 LINK http://dx.doi.org/10.1016/S0921-5093(01)01082-6 [Google Scholar]
  43. C. T. Liu, H. Inouye, “Study of Iridium and Iridium-tungsten Alloys for Space Radioisotopic Heat Sources’, ORNL-5240, Oak Ridge National Laboratory, Tennessee, USA, 1976 LINK http://www.osti.gov/scitech/servlets/purl/7321970 [Google Scholar]
  44. H. Jehn, R. Völker, M. I. Ismail, Platinum Metals Rev., 1978, 22, (3), 92 LINK http://www.technology.matthey.com/article/22/3/92-97/# [Google Scholar]
  45. Ultramet Advanced Materials Solutions, Propulsion System Components, liquid rocket engines,: http://www.ultramet.com/propulsionsystem_components_liquid_rocket.html (Accessed on 17th October 2016)
  46. Z. B. Bao, H. Murakami, Y. Yamabe-Mitarai, Appl. Surf. Sci., 2011, 258, (4), 1514 LINK http://dx.doi.org/10.1016/j.apsusc.2011.09.121 [Google Scholar]
  47. R. T. Wimber, H. G. Kraus, Metall. Trans., 1974, 5, (7), 1565 LINK http://dx.doi.org/10.1007/BF02646327 [Google Scholar]
  48. Z. F. Chen, W. P. Wu, L. B. Wang, Y. Zhang, Surf. Eng., 2011, 27, (4), 242 LINK http://www.tandfonline.com/doi/full/10.1179/174329409X397787 [Google Scholar]
  49. J. W. Arblaster, Platinum Metals Rev., 2010, 54, (2), 93 LINK http://www.technology.matthey.com/article/54/2/93-102/# [Google Scholar]
  50. M. B. Weinberger, J. B. Levine, H.-Y. Chung, R. W. Cumberland, H. I. Rasool, J.-M. Yang, R. B. Kaner, S. H. Tolbert, Chem. Mater., 2009, 21, (9), 1915 LINK http://dx.doi.org/10.1021/cm900211v [Google Scholar]
  51. W. P. Wu, X. Lin, Z. F. Chen, Z. F. Chen, X. N. Cong, T. Z. Xu, J. L. Qiu, Plasma Chem. Plasma Proc., 2011, 31, (3), 465 LINK http://dx.doi.org/10.1007/s11090-011-9293-4 [Google Scholar]
  52. L. B. Hunt, Platinum Metals Rev., 1987, 31, (1), 32 LINK http://www.technology.matthey.com/article/31/1/32-41/ [Google Scholar]
  53. Y. Ritterhaus, T. Hur’yeva, M. Lisker, E. P. Burte, Chem. Vap. Deposition, 2007, 13, (12), 698 LINK http://dx.doi.org/10.1002/cvde.200706630 [Google Scholar]
  54. S. S. Hecker, D. L. Rohr, D. F. Stein, Metall. Trans. A, 1978, 9, (4), 481 LINK http://dx.doi.org/10.1007/BF02646403 [Google Scholar]
  55. S. M. Sabol, B. T. Randall, J. D. Edington, C. J. Larkin, B. J. Close, “Barrier Coatings for Refractory Metals and Superalloys”, B-MT-(SPME)-35, TRN: US0603658,, Bettis Atomic Power Laboratory (BAPL), Pennsylvania, USA, 2006, pp. 128 LINK http://dx.doi.org/10.2172/884669 [Google Scholar]
  56. K. Mumtaz, J. Echigoya, T. Hirai, Y. Shindo, J. Mater. Sci. Lett., 1993, 12, (18), 1411 LINK http://dx.doi.org/10.1007/BF00591591 [Google Scholar]
  57. N. I. Baklanova, N. B. Morozova, V. V. Kriventsov, A. T. Titov, Carbon, 2013, 56, 243 LINK http://dx.doi.org/10.1016/j.carbon.2013.01.006 [Google Scholar]
  58. J. Merker, B. Fischer, D. F. Lupton, J. Witte, Mater. Sci. Forum, 2007, 539–543, 2216 LINK http://dx.doi.org/10.4028/www.scientific.net/MSF.539-543.2216 [Google Scholar]
  59. R. H. Tuffias, Mater. Manuf. Process., 1998, 13, (5), 773 LINK http://dx.doi.org/10.1080/10426919808935298 [Google Scholar]
  60. G. T. A. Kovacs, C. W. Storment, S. P. Kounaves, Sens. Actuators B, 1995, 23, (1), 41 LINK http://dx.doi.org/10.1016/0925-4005(94)01523-K [Google Scholar]
  61. H.-U. Kim, D.-H. Cha, H.-J. Kim, J.-H. Kim, Int. J. Prec. Eng. Manuf., 2009, 10, (3), 19 LINK http://dx.doi.org/10.1007/s12541-009-0042-z [Google Scholar]
  62. J. Hagen, F. Burmeister, A. Fromm, P. Manns, G. Kleer, Plasma Process. Polym., 2009, 6, (S1), 678 LINK http://onlinelibrary.wiley.com/doi/10.1002/ppap.200931701/full [Google Scholar]
  63. S. Kohli, D. Niles, C. D. Rithner, P. K. Dorhout, Adv. X-ray Anal., 2002, 45, 352 LINK http://www.icdd.com/resources/axa/vol45/v45_55.pdf [Google Scholar]
  64. H. Osamura, ‘Development of Long Life and High Ignitability Iridium Spark Plug’, F2000A144, Seoul 2000 FISITA World Automotive Congress,, Seoul, South Korea, 12th–15th June, 2000 LINK http://210.101.116.115/fisita/pdf/A144.pdf [Google Scholar]
  65. S. Horita, S. Horii, S. Umemoto, Jpn. J. Appl. Phys., 1998, 37, (1), 5141 LINK http://dx.doi.org/10.1143/JJAP.37.5141 [Google Scholar]
  66. Y. Li, J. A. Woollam, J. Vac. Sci. Technol. A, 2004, 22, (5), 2177 LINK http://dx.doi.org/10.1116/1.1781182 [Google Scholar]
  67. Y. Li, J. A. Woollam, J. Appl. Phys., 2002, 92, (8), 4386 LINK http://dx.doi.org/10.1063/1.1509091 [Google Scholar]
  68. E. N. El Sawy, V. I. Birss, J. Mater. Chem., 2009, 19, (43), 8244 LINK http://dx.doi.org/10.1039/b914662h [Google Scholar]
  69. X.-Y. Zhu, J.-J. Wei, L.-X. Chen, J.-L. Liu, L.-F. Hei, C.-M. Li, Y. Zhang, Thin Solid Films, 2015, 584, 305 LINK http://dx.doi.org/10.1016/j.tsf.2015.01.002 [Google Scholar]
  70. S.-C. Liu, Y.-I. Chen, J.-J. Shyu, H.-Y. Tsai, K.-Y. Lin, Y.-H. Chen, K.-C. Lin, Surf. Coat. Technol., 2014, 259, (B), 352 LINK http://dx.doi.org/10.1016/j.surfcoat.2014.01.061 [Google Scholar]
  71. S.-C. Liu, Y.-I. Chen, H.-Y. Tsai, K.-C. Lin, Y.-H. Chen, Surf. Coat. Technol., 2013, 237, 105 LINK http://dx.doi.org/10.1016/j.surfcoat.2013.06.042 [Google Scholar]
  72. M.-W. Cheon, T.-G. Kim, Y.-P. Park, J. Ceramic Proc. Res., 2012, 13, (2), S328 LINK http://jcpr.kbs-lab.co.kr/file/JCPR_vol.13_2012/JCPR13-S2/ICAE2011-43.pdf [Google Scholar]
  73. F.-B. Wu, W.-Y. Chen, J.-G. Duh, Y.-Y. Tsai, Y.-I. Chen, Surf. Coat. Technol., 2003, 163–164, 227 LINK http://dx.doi.org/10.1016/S0257-8972(02)00616-3 [Google Scholar]
  74. H. Fukushima, S. Midorikawa, Canon Kabushiki Kaisha, ‘Amorphous Alloy, Molding Die, and Method for Producing Optical Element’, US Appl. 2014/0,053,606 [Google Scholar]
  75. W. Zhang, R. Vargas, T. Goto, Y. Someno, T. Hirai, Appl. Phys. Lett., 1994, 64, (11), 1359 LINK http://dx.doi.org/10.1063/1.111934 [Google Scholar]
  76. V. G. Bessergenev, N. V. Gelfond, I. K. Igumenov, S. Sh. Ilyasov, R. D. Kangiev, Yu. A. Kovalevskaya, V. S. Kravchenko, S. A. Slobodyan, V. I. Motorin, A. F. Shestak, Supercond. Sci. Technol., 1991, 4, (7), 273 LINK http://dx.doi.org/10.1088/0953-2048/4/7/001 [Google Scholar]
  77. I. K. Igumenov, N. V. Gelfond, P. S. Galkin, N. B. Morozova, N. E. Fedotova, G. I. Zharkova, V. I. Shipachev, E. F. Reznikova, A. D. Ryabtsev, N. P. Kotsupalo, V. I. Titarenko, Yu. P. Dikov, V. V. Distler, M. I. Buleev, Desalination, 2001, 136, (1–3), 273 LINK http://dx.doi.org/10.1016/S0011-9164(01)00190-4 [Google Scholar]
  78. NASA Glenn Research Center at Lewis Field, ‘Achieving the Extraordinary’, NASA, 2006,: http://www.nasa.gov/centers/glenn/pdf/168206main_CenterResume62011.pdf (Accessed on 24th November 2016)
  79. C. T. Liu, E. P. George, E. E. Bloom, UT-Battelle, LLC,, ‘Ir-based Alloys for Ultra-high Temperature Applications’, US Patent 6,982,122; 2006 [Google Scholar]
  80. R. H. Tuffias, J. Harding, R. Kaplan, Ultramet,, ‘High Temperature Corrosion Resistant Composite Structure’, US Patent 4,917,968; 1990 [Google Scholar]
  81. H.-J. Li, H. Xue, Q.-G. Fu, Y.-L. Zhang, X.-H. Shi, K.-Z. Li, J. Inorg. Mater., 2010, 25, (4), 337 LINK http://dx.doi.org/10.3724/SP.J.1077.2010.00337 [Google Scholar]
  82. H. Hosoda, H. Hosono, Y. Mishima, H. Takezoe, K. J. D. MacKenzie, ‘Smart Coatings – Multilayered and Multifunctional in-situ Ultrahigh-temperature Coatings’, in “Nanomaterials: From Research to Applications”, eds. Elsevier Ltd, Oxford, UK, 2006, pp. 419445 LINK http://dx.doi.org/10.1016/B978-008044964-7/50014-5 [Google Scholar]
  83. W. M. Clift, K. F. McCarty, D. R. Boehme, Surf. Coat. Technol., 1990, 42, (1), 29 LINK http://dx.doi.org/10.1016/0257-8972(90)90112-P [Google Scholar]
  84. Y. Yamabe-Mitari, Y. Ro, T. Maruko, H. Harada, Intermetallics, 1999, 7, (1), 49 LINK http://dx.doi.org/10.1016/S0966-9795(98)00010-7 [Google Scholar]
  85. P. Kuppusami, H. Murakami, T. Ohmura, Surf. Eng., 2005, 21, (1), 53 LINK http://dx.doi.org/10.1179/174329305X23218 [Google Scholar]
  86. A. Suzuki, Y. Wu, A. Yamaguchi, H. Murakami, C. M. F. Rae, Oxid. Met., 2007, 68, (1), 53 LINK http://dx.doi.org/10.1007/s11085-007-9056-z [Google Scholar]
  87. S.-F. Tseng, W.-T. Hsiao, K.-C. Huang, M.-F. Chen, C.-T. Lee, C.-P. Chou, Surf. Coat. Technol., 2010, 205, (7), 1979 LINK http://dx.doi.org/10.1016/j.surfcoat.2010.08.075 [Google Scholar]
  88. S. K. Dey, J. Goswami, C.-G. Wang, P. Majhi, Jpn. J. Appl. Phys., 1999, 38, (2), 1052 LINK http://dx.doi.org/10.1143/JJAP.38.L1052 [Google Scholar]
  89. M. A. El Khakani, M. Chaker, B. Le Drogoff, J. Vac. Sci. Technol. A, 1998, 16, (2), 885 LINK http://dx.doi.org/10.1116/1.581029 [Google Scholar]
  90. K. Mumtaz, J. Echigoya, H. Enoki, T. Hirai, Y. Shindo, J. Mater. Sci., 1995, 30, (2), 465 LINK http://dx.doi.org/10.1007/BF00354413 [Google Scholar]
  91. K. Mumtaz, J. Echigoya, T. Hirai, Y. Shindo, Mater. Sci. Eng.: A, 1993, 167, (1–2), 187 LINK http://dx.doi.org/10.1016/0921-5093(93)90353-G [Google Scholar]
  92. F. Maury, F. Senocq, Surf. Coat. Technol., 2003, 163–164, 208 LINK http://dx.doi.org/10.1016/S0257-8972(02)00485-1 [Google Scholar]
  93. X. Yan, Q. Zhang, X. Fan, Mater. Lett., 2007, 61, (1), 216 LINK http://dx.doi.org/10.1016/j.matlet.2006.04.034 [Google Scholar]
  94. Y.-L. Chen, C.-C. Hsu, Y.-H. Song, Y. Chi, A. J. Carty, S.-M. Peng, G.-H. Lee, Chem. Vap. Deposition, 2006, 12, (7), 442 LINK http://dx.doi.org/10.1002/cvde.200606491 [Google Scholar]
  95. T. Aaltonen, M. Ritala, V. Sammelselg, M. Leskelä, J. Electrochem. Soc., 2004, 151, (8), G489 LINK http://dx.doi.org/10.1149/1.1761011 [Google Scholar]
  96. Y.-N. Wu, A. Suzuki, H. Murakami, S. Kuroda, Mater. Trans., 2005, 46, (10), 2176 LINK http://dx.doi.org/10.2320/matertrans.46.2176 [Google Scholar]
  97. L.-A. Zhu, S.-X. Bai, H. Zhang, Surf. Coat. Technol., 2011, 206, (6), 1351 LINK http://dx.doi.org/10.1016/j.surfcoat.2011.08.058 [Google Scholar]
  98. A. Etenko, T. McKechnie, A. Shchetkovskiy, A. Smirnov, ECS Trans., 2007, 3, (14), 151 LINK http://ecst.ecsdl.org/content/3/14/151.abstract [Google Scholar]
  99. J.-G. Qian, T. Zhao, Trans. Nonferrous Met. Soc. China, 2012, 22, (11), 2855 LINK http://dx.doi.org/10.1016/S1003-6326(11)61542-2 [Google Scholar]
  100. Y.-S. Gong, C.-B. Wang, Q. Shen, L.-M. Zhang, Appl. Surf. Sci., 2008, 254, (13), 3921 LINK http://dx.doi.org/10.1016/j.apsusc.2007.12.012 [Google Scholar]
  101. W.-P. Wu, Z.-F. Chen, X. Lin, B.-B. Li, X.-N. Cong, Vacuum, 2011, 86, (4), 429 LINK http://dx.doi.org/10.1016/j.vacuum.2011.09.003 [Google Scholar]
  102. D. A. Toenshoff, R. D. Lanam, J. Ragaini, A. Shchetkovskiy, A. Smirnov, ‘Iridium Coated Rhenium Rocket Chambers Produced by Electroforming’, 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, USA, 24th–28th July, 2000, LINK http://dx.doi.org/10.2514/6.2000-3166 [Google Scholar]
  103. J. R. V. Garcia, T. Goto, Mater. Trans., 2003, 44, (9), 1717 LINK http://dx.doi.org/10.2320/matertrans.44.1717 [Google Scholar]
  104. J. T. Harding, V. Fry, R. H. Tuffias, R. B. Kaplan, “Oxidation Resistance of CVD Coatings”, AFRPL TR-86-099, Air Force Rocket Propulsion Laboratory (AFRPL), Edwards Air Force Base, California, USA,, 1987, p. 29 [Google Scholar]
  105. J. T. Harding, R. H. Tuffias, R. B. Kaplan, “High Temperature Oxidation Resistant Coatings”, AFRPL TR-84-036, Air Force Rocket Propulsion Laboratory (AFRPL), Edwards Air Force Base, California, USA,, 1984 [Google Scholar]
  106. J. P. Endle, Y.-M. Sun, N. Nguyen, S. Madhukar, R. L. Hance, J. M. White, J. G. Ekerdt, Thin Solid Films, 2001, 388, (1–2), 126 LINK http://dx.doi.org/10.1016/S0040-6090(01)00808-2 [Google Scholar]
  107. N. V. Gelfond, P. S. Galkin, I. K. Igumenov, N. B. Morozova, N. E. Fedotova, G. I. Zharkova, Yu. V. Shubin, J. Phys. IV France, 2001, 11, (Pr3), 593 LINK http://dx.doi.org/10.1051/jp4:2001375 [Google Scholar]
  108. I. K. Igumenov, N. V. Gelfond, N. B. Morozova, H. Nizard, Chem. Vapor Depos., 2007, 13, (11), 633 LINK http://dx.doi.org/10.1002/cvde.200706602 [Google Scholar]
  109. Y.-S. Gong, C.-B. Wang, Q. Shen, L.-M. Zhang, Vacuum, 2008, 82, (6), 594 LINK http://dx.doi.org/10.1016/j.vacuum.2007.09.003 [Google Scholar]
  110. W.-P. Wu, Z.-F. Chen, X.-N. Cong, L.-B. Wang, Rare Metal Mater. Eng., 2013, 42, (2), 435 (In Chinese) LINK http://caod.oriprobe.com/articles/31751798/Review_on_High_Temperature_Oxidation_Resistant_Iridium_Coating_for_Ref.htm [Google Scholar]
  111. J. M. Criscione, R. A. Mercuri, E. P. Schram, A. W. Smith, H. F. Volk, ‘High Temperature Protective Coatings for Graphite’, ML-TDR-64-173, Part I, Union Carbide Corporation, Parma, Ohio, USA,, 1964 LINK http://www.dtic.mil/dtic/tr/fulltext/u2/604463.pdf [Google Scholar]
  112. J. M. Criscione, R. A. Mercuri, E. P. Schram, A. W. Smith, H. F. Volk, ‘High Temperature Protective Coatings for Graphite’, ML-TDR-64-173, Part II, Union Carbide Corporation, Parma, Ohio, USA,, 1964 LINK http://www.dtic.mil/dtic/tr/fulltext/u2/608092.pdf [Google Scholar]
  113. T. Goto, T. Ono, T. Hirai, Scripta Mater., 2001, 44, (8–9), 1187 LINK http://dx.doi.org/10.1016/S1359-6462(01)00683-2 [Google Scholar]
  114. Y.-M. Sun, J. P. Endle, K. Smith, S. Whaley, R. Mahaffy, J. G. Ekerdt, J. M. White, R. L. Hance, Thin Solid Films, 1999, 346, (1–2), 100 LINK http://dx.doi.org/10.1016/S0040-6090(98)01458-8 [Google Scholar]
  115. J. B. Hoke, E. W. Stern, H. H. Murray, J. Mater. Chem., 1991, 1, (4), 551 LINK http://dx.doi.org/10.1039/jm9910100551 [Google Scholar]
  116. H.-Z. Cai, L. Chen, Y. Wei, C.-Y. Hu, Rare Metal Mater. Eng., 2010, 39, (2), 209 LINK http://dx.doi.org/10.1016/S1875-5372(10)60081-1 [Google Scholar]
  117. B. D. Reed, J. A. Biaglow, S. J. Schneider, Mater. Manuf. Proc., 1998, 13, (5), 757 LINK http://dx.doi.org/10.1080/10426919808935297 [Google Scholar]
  118. K. Knapas, M. Ritala, Chem. Mater., 2011, 23, (11), 2766 LINK http://dx.doi.org/10.1021/cm103490v [Google Scholar]
  119. J. Hämäläinen, E. Puukilainen, T. Sajavaara, M. Ritala, M. Leskelä, Thin Solid Films, 2013, 531, 243 LINK http://dx.doi.org/10.1016/j.tsf.2013.01.091 [Google Scholar]
  120. J. Hämäläinen, M. Ritala, M. Leskelä, Chem. Mater., 2014, 26, (1), 786 LINK http://dx.doi.org/10.1021/cm402221y [Google Scholar]
  121. J. Hämäläinen, T. Hatanpää, E. Puukilainen, T. Sajavaara, M. Ritala, M. Leskelä, J. Mater. Chem., 2011, 21, (41), 16488 LINK http://dx.doi.org/10.1039/c1jm12245b [Google Scholar]
  122. J. Hämäläinen, E. Puukilainen, M. Kemell, L. Costelle, M. Ritala, M. Leskelä, Chem. Mater., 2009, 21, (20), 4868 LINK http://dx.doi.org/10.1021/cm901687w [Google Scholar]
  123. S. T. Christensen, J. W. Elam, Chem. Mater., 2010, 22, (8), 2517 LINK http://dx.doi.org/10.1021/cm9031978 [Google Scholar]
  124. J. A. Venables, “Introduction to Surface and Thin Film Processes”, Cambridge University Press, Cambridge, UK, 2000 LINK http://dx.doi.org/10.1017/CBO9780511755651 [Google Scholar]
  125. M. Ohring, “Materials Science of Thin Films: Deposition and Structure”, 2nd Edn.,Academic Press, San Diego, California, USA, 2002 [Google Scholar]
  126. K. Mumtaz, J. Echigoya, H. Enoki, T. Hirai, Y. Shindo, J. Alloys Compd., 1994, 209, (1–2), 279 LINK http://dx.doi.org/10.1016/0925-8388(94)91114-2 [Google Scholar]
  127. H. Murakami, T. Yano, S. Sodeoka, Mater. Trans., 2004, 45, (9), 2886 LINK http://dx.doi.org/10.2320/matertrans.45.2886 [Google Scholar]
  128. F. Wu, H. Murakami, A. Suzuki, Surf. Coat. Technol., 2003, 168, (1), 62 LINK http://dx.doi.org/10.1016/S0257-8972(03)00009-4 [Google Scholar]
  129. K. Kamiya, H. Murakami, J. Japan Inst. Metals Mater., 2005, 69, (1), 73 LINK http://dx.doi.org/10.2320/jinstmet.69.73 [Google Scholar]
  130. S. Isogawa, H. Tojo, A. Chayahara, Y. Horino, Surf. Coat. Technol., 2002, 158–159, 186 LINK http://dx.doi.org/10.1016/S0257-8972(02)00202-5 [Google Scholar]
  131. I.-S. Lee, C.-N. Whang, J.-C. Park, D.-H. Lee, W.-S. Seo, Biomater., 2003, 24, (13), 2225 LINK http://dx.doi.org/10.1016/S0142-9612(03)00025-5 [Google Scholar]
  132. T. Jones, Metal Finish., 2004, 102, (6), 87 LINK http://dx.doi.org/10.1016/S0026-0576(04)82560-1 [Google Scholar]
  133. M. Cohen Sagiv, N. Eliaz, E. Gileadi, Electrochim. Acta, 2013, 88, 240 LINK http://dx.doi.org/10.1016/j.electacta.2012.10.094 [Google Scholar]
  134. W.-P. Wu, N. Eliaz, E. Gileadi, J. Electrochem. Soc., 2015, 162, (1), D20 LINK http://dx.doi.org/10.1149/2.0281501jes [Google Scholar]
  135. J.-G. Qian, S.-M. Xiao, T. Zhao, H.-J. Luan, Rare Metal Mater. Eng., 2012, 41, (7), 1139 LINK http://dx.doi.org/10.1016/S1875-5372(12)60057-5 [Google Scholar]
  136. J.-G. Qian, Y. Yin, X. Li, T.-J. Li, Trans. Nonferrous Metals Soc. China, 2015, 25, (5), 1685 LINK http://dx.doi.org/10.1016/S1003-6326(15)63773-6 [Google Scholar]
  137. J.-G. Qian, T. Zhao, Trans. Nonferrous Metals Soc. China, 2012, 22, (11), 2855 LINK http://dx.doi.org/10.1016/S1003-6326(11)61542-2 [Google Scholar]
  138. N. A. Saltykova, O. V. Portnyagin, Russ. J. Electrochem., 2001, 37, (9), 924 LINK http://dx.doi.org/10.1023/A:1011944226271 [Google Scholar]
  139. N. I. Timofeev, V. E. Baraboshkin, N. A. Saltykova, E. K. Ohriner, R. D. Lanam, P. Panfilov, H. Harada, ‘Production of Iridium Crucibles by Electrolysis of Molten Salts’, in “Iridium”, eds. Proceedings of the International Symposium held During the 129th Annual Meeting & Exhibition of The Minerals, Metals & Materials Society (TMS), Nashville, Tennessee, USA, TMS, Warrendale, Pennsylvania,, 2000, pp. 175179 [Google Scholar]
  140. N. A. Saltykova, J. Min. Metall. B: Metall., 2003, 39, (1–2), 201 LINK http://dx.doi.org/10.2298/JMMB0302201S [Google Scholar]
  141. N. A. Saltykova, S. N. Kotovskii, O. V. Portnyagin, A. N. Baraboshkin, N. O. Esina, Sov. Electrochem., 1990, 26, (3), 338 [Google Scholar]
  142. Y.-L. Huang, S.-X. Bai, H. Zhang, Y.-C. Ye, Appl. Surf. Sci., 2015, 328, 436 LINK http://dx.doi.org/10.1016/j.apsusc.2014.12.063 [Google Scholar]
  143. B. D. Reed, R. Dickerson, ‘Testing of Electroformed Deposited Iridium/Powder Metallurgy Rhenium Rockets’, NASA Technical Memorandum 107172, National Aeronautics and Space Administration, Cleveland, Ohio, USA,, 1995 LINK http://ntrs.nasa.gov/search.jsp?R=19960049927 [Google Scholar]
  144. L.-B. Wang, Z.-F. Chen, P.-Z. Zhang, W.-P. Wu, Y. Zhang, J. Coat. Technol. Res., 2009, 6, (4), 517 LINK http://dx.doi.org/10.1007/s11998-008-9123-7 [Google Scholar]
  145. L.-B. Wang, Z.-F. Chen, Y. Zhang, W.-P. Wu, Int. J. Refract. Metals Hard Mater., 2009, 27, (3), 590 LINK http://dx.doi.org/10.1016/j.ijrmhm.2008.09.004 [Google Scholar]
  146. Y. Zhang, Z.-F. Chen, L.-B. Wang, W.-P. Wu, D. Fang, J. Coat. Technol. Res., 2009, 6, (2), 237 LINK http://dx.doi.org/10.1007/s11998-008-9109-5 [Google Scholar]
  147. X.-N. Cong, Z.-F. Chen, W.-P. Wu, J. Xu, F. E. Boafo, Appl. Surf. Sci., 2012, 258, (12), 5135 LINK http://dx.doi.org/10.1016/j.apsusc.2012.01.149 [Google Scholar]
  148. X.-N. Cong, Z.-F. Chen, W.-P. Wu, Z. F. Chen, F. E. Boafo, Acta Astronaut., 2012, 79, 88 LINK http://dx.doi.org/10.1016/j.actaastro.2012.02.028 [Google Scholar]
  149. W.-P. Wu, Z.-F. Chen, X.-N. Cong, T. S. Sudarshan, M. Jeandin, V. Fridrici, ‘Protective Ir-Zr and Ir Coatings for Refractory Metals’, 26th International Conference on Surface Modification Technologies, Écully-Lyon, France, 20th–22nd June, 2012, in “Surface Modification Technologies XXVI: Proceedings of the Twenty Sixth International Conference on Surface Modification Technologies”, eds. Valardocs, Chennai, India, 2013, pp. 395406 [Google Scholar]
  150. J.-M. Wang, Z.-W. Zhang, Z.-H. Xu, X. Lin, W.-P. Wu, Z. F. Chen, Corros. Eng. Sci. Technol., 2011, 46, (6), 732 LINK http://dx.doi.org/10.1179/1743278210Y.0000000023 [Google Scholar]
  151. Z.-W. Zhang, Z.-H. Xu, J.-M. Wang, W.-P. Wu, Z.-F. Chen, J. Mater. Eng. Perf., 2012, 21, (10), 2085 LINK http://dx.doi.org/10.1007/s11665-012-0133-3 [Google Scholar]
  152. W.-P. Wu, Z.-F. Chen, Y. Liu, Plasma Sci. Technol., 2012, 14, (10), 909 LINK http://dx.doi.org/10.1088/1009-0630/14/10/10 [Google Scholar]
  153. W.-P. Wu, Z.-F. Chen, J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2012, 27, (4), 652 LINK http://dx.doi.org/10.1007/s11595-012-0522-3 [Google Scholar]
  154. W.-P. Wu, Z.-F. Chen, X.-W. Cheng, Y.-W. Wang, Nucl. Instr. Meth. Phys. Res. Sect. B: Beam Int. Mater. Atoms, 2013, 307, 315 LINK http://dx.doi.org/10.1016/j.nimb.2012.12.069 [Google Scholar]
  155. W.-P. Wu, Z.-F. Chen, X. Lin, Adv. Mater. Res., 2011, 189–193, 688 LINK http://dx.doi.org/10.4028/www.scientific.net/AMR.189-193.688 [Google Scholar]
  156. D. H. Lowndes, D. B. Geohegan, A. A. Puretzky, D. P. Norton, C. M. Rouleau, Science, 1996, 273, (5277), 898 LINK http://dx.doi.org/10.1126/science.273.5277.898 [Google Scholar]
  157. M. Galeazzi, C. Chen, J. L. Cohn, J. O. Gundersen, Nucl. Instrum. Meth. Phys. Res. Sect. A: Accel., Spectr., Detect. Assoc. Equip., 2004, 520, (1–3), 293 LINK http://dx.doi.org/10.1016/j.nima.2003.11.241 [Google Scholar]
  158. C.-L. Chen, ‘Iridium Thin Films Deposited via Pulsed Laser Deposition’, PhD Thesis, University of Miami, USA, Dissertations from ProQuest, Paper 2456, 2006, LINK http://scholarlyrepository.miami.edu/dissertations/2456/ [Google Scholar]
  159. H. Herzig, Platinum Metals Rev., 1983, 27, (3), 108 LINK http://www.technology.matthey.com/article/27/3/108-109/ [Google Scholar]
  160. T. Bauer, S. Gsell, M. Schreck, J. Goldfuß, J. Lettieri, D. G. Schlom, B. Stritzker, Diam. Relat. Mater., 2005, 14, (3–7), 314 LINK http://dx.doi.org/10.1016/j.diamond.2004.10.028 [Google Scholar]
  161. H.-Q. Li, D.-Y. Chen, F.-T. Xu, Z.-H. Jia, X.-H. Zhang, Aerospace Mater. Technol., 2013, (6), 64 (in Chinese) LINK http://en.cnki.com.cn/Article_en/CJFDTotal-YHCG201306014.htm [Google Scholar]
  162. J. O. Milewski, D. J. Thoma, J. C. Fonseca, G. K. Lewis, Mater. Manuf. Process., 1998, 13, (5), 719 LINK http://dx.doi.org/10.1080/10426919808935294 [Google Scholar]
/content/journals/10.1595/205651317X693606
Loading
/content/journals/10.1595/205651317X693606
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test