Skip to content
Volume 61, Issue 2
  • ISSN: 2056-5135


The solutions being developed for a sustainable future are technologically complex and demanding; relying on ‘high-tech’ raw materials. Many of these materials face significant supply risk. Business, government, national and international organisations are increasingly focusing on these critical raw materials (CRMs). This paper describes the strategies and innovations being developed to manage supply risk using rare earth elements and magnets as examples. The ongoing need to find substitute materials and improve efficiency, recycling and recovery of CRMs provides exciting opportunities for fundamental research and commercial innovation.


Article metrics loading...

Loading full text...

Full text loading...



  1. Beddington J. ‘Food, Energy, Water and the Climate: A Perfect Storm of Global Events’, Sustainable Development UK Annual Conference, QEII Conference Centre, London, UK, 19th March, 2009 LINK [Google Scholar]
  2. ‘UK Non-financial Business Economy, Sections A to S (Part)’, in “Annual Business Survey, UK Non-financial Business Economy: 2015 Provisional Results”, Statistical bulletin, Office for National Statistics, South Wales, UK, 2016 LINK [Google Scholar]
  3. United Nations, Sustainable Development Knowledge Platform, Sustainable Development Goals: (Accessed on 4th January 2017)
  4. Arafura Resources Ltd, Pricing: (Accessed on 20th August 2014)
  5. Gambogi J. “2014 Minerals Yearbook: Rare Earths”, US Geological Survey, Virginia, USA, 2016 LINK [Google Scholar]
  6. Rohrig B. ‘Smart Phones: Smart Chemistry’, ChemMatters, April 2015, p. 10 LINK [Google Scholar]
  7. Brunning A. ‘The Chemical Elements of a Smartphone’, Compound Interest, Cambridge, UK, 2014 LINK [Google Scholar]
  8. Barteková E., and Kemp R. “Critical Raw Material Strategies in Different World Regions”, The United Nations University – Maastricht Economic and Social Research Institute on Innovation and Technology (UNU-MERIT) Working Papers 2016-005, Maastricht University, The Netherlands, 2016 LINK [Google Scholar]
  9. European Commission, ‘Report on Critical Raw Materials for the EU: Critical Raw Materials Profiles’, Ref. Ares(2015)3396873, Brussels, Belgium, 14th August, 2015 LINK [Google Scholar]
  10. Silberglitt R., Bartis J. T., Chow B. G., An D. L., and Brady K. “Critical Materials: Present Danger to US Manufacturing”, RAND Corp, California, USA, 2013 LINK [Google Scholar]
  11. Kawamoto H. Sci. Technol. Trend. Quart. Rev., 2008, 27, (04), 57 LINK [Google Scholar]
  12. MineralsUK, ‘Risk List 2015’, British Geological Survey Centre for Sustainable Mineral Development, Nottingham, UK, 2015 LINK [Google Scholar]
  13. European Commission, Directorate-General Enterprise and Industry, Directorate F Resources Based, Manufacturing and Consumer Goods Industries, ‘US-Japan-EU Trilateral Workshop on Critical Raw Materials: Workshop Report/Minutes’, Ref. Ares(2014)2187791, Brussels, Belgium, 2nd December, 2013 LINK [Google Scholar]
  14. The Ames Laboratory, US Department of Energy, Critical Materials Institute: (Accessed on 27th January 2017)
  15. Advanced Research Projects Agency-Energy (ARPA-E), ‘REACT Program Overview’, ARPA-E, Washington DC, USA, 2011 LINK [Google Scholar]
  16. EIT RawMaterials: (Accessed on 27th January 2017)
  17. National Institute of Materials Science: (Accessed on 27th January 2017)
  18. Graedel T. E., Harper E. M., Nassar N. T., and Reck B. K. Proc. Nat. Acad. Sci., 2015, 112, (20), 6295 LINK [Google Scholar]
  19. Marshall L. G. ‘Clean Energy Runs on Magnets’, Minor Metals Trade Association, London, UK, 2016 LINK [Google Scholar]
  20. Constantinides S. ‘The Demand for Rare Earth Materials in Permanent Magnets’, 51st Annual Conference of Metallurgists, Niagara Falls, USA, 30th September–3rd October, 2012 LINK [Google Scholar]
  21. Buchert M., Manhart A., Bleher D., and Pingel D. “Recycling Critical Raw Materials from Waste Electronic Equipment”, Oeko-Institut eV, Darmstadt, Germany, 2012 LINK [Google Scholar]
  22. Binnemans K., Jones P. T., Van Acker K., Blanpain B., Mishra B., and Apelian D. J. Met., 2013, 65, (7), 846 LINK [Google Scholar]
  23. Sheth N. ‘Dysprosium-Free Rare Earth Magnets for High Temperature Applications’, Magnetics Business & Technology, March, 2013 LINK [Google Scholar]
  24. Pathak A. K., Khan M., Gschneidner K. A. Jr, McCallum R. W., Zhou L., Sun K., Dennis K. W., Zhou C., Pinkerton F. E., Kramer M. J., and Pecharsky V. K. Adv. Mater., 2015, 27, (16), 2663 [Google Scholar]
  25. Huber C., Abert C., Bruckner F., Groenefeld M., Muthsam O., Schuschnigg S., Sirak K., Thanhoffer R., Teliban I., Vogler C., Windl R., and Suess D. Appl. Phys. Lett., 2016, 109, (16), 162401 [Google Scholar]
  26. Li L., Tirado A., Nlebedim I. C., Rios O., Post B., Kunc V., Lowden R. R., Lara-Curzio E., Fredette R., Ormerod J., Lograsso T. A., and Parans Paranthaman M. Sci Rep., 2016, 6, 36212 LINK [Google Scholar]
  27. Parans Paranthaman M., Sridharan N., List F. A., Babu S. S., Dehoff R. R., and Constantinides S. ‘Additive Manufacturing of Near-net Shaped Permanent Magnets’, ORNL/TM-2016/340, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA, 2016 LINK [Google Scholar]
  28. Binnemans K., Jones P. T., Blanpain B., Van Gerven T., Yang Y., Walton A., and Buchert M. J. Clean. Prod., 2013, 51, 1 LINK [Google Scholar]
  29. Walton A., Yi H., Rowson N. A., Speight J. D., Mann V. S. J., Sheridan R. S., Bradshaw A., Harris I. R., and Williams A. J. J. Clean. Prod., 2015, 104, 236 LINK [Google Scholar]
  30. Seay S. G. ‘ORNL Licenses Rare Earth Magnet Recycling Process’, Materials Science, Phys Org, 2nd September, 2016 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error