Skip to content
1887
Volume 61, Issue 3
  • ISSN: 2056-5135

Abstract

Organometallic catalysis has its origins in the 18th and 19th centuries. Then, the emphasis was on achieving remarkable chemical transformations, but today the focus is increasingly on sustainability. This article summarises the current promising approaches with special regard to those that have commercial potential, including non-aqueous and water immiscible solvents, modified enzymes, micellar catalysis, catalysis with low loading, metal-free catalysis and catalyst recycling. Environmental metrics, a key evaluation tool for any industrial chemical process, are used in micellar catalysis to demonstrate their usefulness, especially to achieve streamlined protocols, reduce losses and eliminate toxic materials.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X695866
2017-01-01
2025-01-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/61/3/JMTR-61-3-Handa2.html?itemId=/content/journals/10.1595/205651317X695866&mimeType=html&fmt=ahah

References

  1. H. Renata, Z. J. Wang, F. H. Arnold, Angew. Chem. Int. Ed., 2015, 54, (11), 3351 LINK https://doi.org/10.1002/anie.201409470 [Google Scholar]
  2. N. Sharma, H. Ojha, A. Bharadwaj, D. P. Pathak, R. K. Sharma, RSC Adv., 2015, 5, (66), 53381 LINK https://doi.org/10.1039/c5ra06778b [Google Scholar]
  3. C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev., 2013, 113, (7), 5322 LINK https://doi.org/10.1021/cr300503r [Google Scholar]
  4. Y. Qin, L. Zhu, S. Luo, Chem. Rev., 2017, article ASAP LINK https://doi.org/10.1021/acs.chemrev.6b00657 [Google Scholar]
  5. J. M. Falkowski, T. Sawano, T. Zhang, G. Tsun, Y. Chen, J. V. Lockard, W. Lin, J. Am. Chem. Soc., 2014, 136, (14), 5213 LINK https://doi.org/10.1021/ja500090y [Google Scholar]
  6. D. Seyferth, Organometallics, 2001, 20, (8), 1488 LINK https://doi.org/10.1021/om0101947 [Google Scholar]
  7. D. Seyferth, Organometallics, 2001, 20, (14), 2940 LINK https://doi.org/10.1021/om010439f [Google Scholar]
  8. L. B. Hunt, Platinum Metals Rev., 1984, 28, (2), 76 LINK http://www.technology.matthey.com/article/28/2/76-83/ [Google Scholar]
  9. T. Asefa, “Nanocatalysis: Synthesis and Applications”, eds. V. Polshettiwar, John Wiley & Sons, Inc, New Jersey, USA, 2013, 736 pp [Google Scholar]
  10. J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40, (1), 102 LINK https://doi.org/10.1039/B913880N [Google Scholar]
  11. B. H. Lipshutz, S. Ghorai, Green Chem., 2014, 16, (8), 3660 LINK https://doi.org/10.1039/C4GC00503A [Google Scholar]
  12. B. H. Lipshutz, N. A. Isley, J. C. Fennewald, E. D. Slack, Angew. Chem. Int. Ed., 2013, 52, (42), 10952 LINK https://doi.org/10.1002/anie.201302020 [Google Scholar]
  13. C.-J. Li, B. M. Trost, Proc. Natl. Acad. Sci. USA, 2008, 105, (36), 13197 LINK https://doi.org/10.1073/pnas.0804348105 [Google Scholar]
  14. G. C. Bond, C. Louis, D. T. Thompson, “Catalysis by Gold”, Catalytic Science Series, Vol. 6, Imperial College Press, London, UK, 2006, pp 384 [Google Scholar]
  15. M. N. Hopkinson, A. Tlahuext-Aca, F. Glorius, Acc. Chem. Res., 2016, 49, (10), 2261 LINK https://doi.org/10.1021/acs.accounts.6b00351 [Google Scholar]
  16. G. E. Stahlii, “Experimenta, Observationes, Animadversiones, CCC Numero, Chymicae et Physicae”, Berolini, 1731, pp 420 LINK http://dx.doi.org/10.3931/e-rara-18749 [Google Scholar]
  17. P. B. Chock, J. Halpern, F. E. Paulik, S. I. Shupack, T. P. DeAngelis, J. K. Ruff, ‘Potassium Trichloro(Ethene)Platinate(II)(Zeise’s Salt)’ in “Inorganic Syntheses”, Vol. 14, eds. A. Wold, John Wiley & Sons, Inc, New Jersey, USA, 1973, p. 349 LINK https://doi.org/10.1002/9780470132456.ch17 [Google Scholar]
  18. E. Frankland, Q. J. Chem. Soc., 1850, 2, (3), 263 LINK https://doi.org/10.1039/QJ8500200263 [Google Scholar]
  19. T. Harada, Bull. Chem. Soc. Japan, 1939, 14, (10), 472 LINK https://doi.org/10.1246/bcsj.14.472 [Google Scholar]
  20. E. C. Constable, C. E. Housecroft, Chem. Soc. Rev., 2013, 42, (4), 1429 LINK https://doi.org/10.1039/C2CS35428D [Google Scholar]
  21. V. Ravindran, Bull. Electrochem., 1996, 12, 248 [Google Scholar]
  22. Tissier and Grignard,, C.r. Hebd. Seanc. Acad. Sci. Paris, 1901, 132, 835 LINK http://www.biodiversitylibrary.org/page/3548602#page/891/mode/1up [Google Scholar]
  23. W. J. Pope, S. J. Peachey, J. Chem. Soc. Trans., 1909, 95, 571 LINK https://doi.org/10.1039/CT9099500571 [Google Scholar]
  24. P. Sabatier, Ber. Dtsch. Chem. Ges., 1911, 44, (3), 1984 LINK https://doi.org/10.1002/cber.19110440303 [Google Scholar]
  25. F. Fischer, H. Tropsch, Brennst. Chem., 1923, 4, 276 [Google Scholar]
  26. F. Fischer, H. Tropsch, Brennst. Chem., 1926, 7, 97 [Google Scholar]
  27. F. Fischer, H. Tropsch, Ber. Dtsch. Chem. Ges., 1926, 59, 830 [Google Scholar]
  28. P. Mars, D. W. van Krevelen, Chem. Eng. Sci., 1954, 3, Suppl. 1, 41 LINK https://doi.org/10.1016/S0009-2509(54)80005-4 [Google Scholar]
  29. D. K. Sacken, ‘Promoted Supported Silver Surface Catalyst and Process of Preparing Same’, US Patent Appl., 1954/2,671,764 [Google Scholar]
  30. O. Roelen, W. Feisst, ‘Verfahren zur Katalytischen UEberfuehrung von Oxyden des Kohlenstoffs Mittels Wasserstoff in Hoehere Kohlenwasserstoffe’, German Patent, 701,846; 1941 [Google Scholar]
  31. R. Jira, Angew. Chem. Int. Ed., 2009, 48, (48), 9034 LINK https://doi.org/10.1002/anie.200903992 [Google Scholar]
  32. L. Vaska, J. W. DiLuzio, J. Am. Chem. Soc., 1961, 83, (12), 2784 LINK https://doi.org/10.1021/ja01473a054 [Google Scholar]
  33. E. O. Fischer, A. Maasböl, Angew. Chem., 1964, 76, (14), 645 LINK https://doi.org/10.1002/ange.19640761405 [Google Scholar]
  34. E. O. Fischer, A. Maasböl, Angew. Chem. Int. Ed. Engl., 1964, 3, (8), 580 LINK https://doi.org/10.1002/anie.196405801 [Google Scholar]
  35. J. A. Osborn, G. Wilkinson, J. F. Young, Chem. Commun. (London), 1965, (2), 17 LINK https://doi.org/10.1039/c19650000017 [Google Scholar]
  36. J. Chatt, R. S. Coffey, B. L. Shaw, J. Chem. Soc., 1965, 7391 LINK https://doi.org/10.1039/jr9650007391 [Google Scholar]
  37. H. Nozaki, S. Moriuti, H. Takaya, R. Noyori, Tetrahedron Lett., 1966, 43, (7), 5239 LINK https://doi.org/10.1016/S0040-4039(01)89263-7 [Google Scholar]
  38. T. P. Dang, H. B. Kagan, J. Chem. Soc. D, 1971, (10), 481 LINK https://doi.org/10.1039/C29710000481 [Google Scholar]
  39. W. S. Knowles, Angew. Chem. Int. Ed., 2002, 41, (12),  1998https://doi.org/10.1002/1521-3773(20020617)41:12<1998::AID-ANIE1998>3.0.CO;2-8 [Google Scholar]
  40. T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc., 1980, 102, (18), 5974 LINK https://doi.org/10.1021/ja00538a077 [Google Scholar]
  41. M. Berthod, G. Mignani, G. Woodward, M. Lemaire, Chem. Rev., 2005, 105, (5), 1801 LINK https://doi.org/10.1021/cr040652w [Google Scholar]
  42. P. Anastas, N. Eghbali, Chem. Soc. Rev., 2010, 39, (1), 301 LINK https://doi.org/10.1039/B918763B [Google Scholar]
  43. B. H. Lipshutz, S. Ghorai, A. R. Abela, R. Moser, T. Nishikata, C. Duplais, A. Krasovskiy, R. D. Gaston, R. C. Gadwood, J. Org. Chem., 2011, 76, (11), 4379 LINK https://doi.org/10.1021/jo101974u [Google Scholar]
  44. G. La Sorella, G. Strukul, A. Scarso, Green Chem., 2015, 17, (2), 644 LINK https://doi.org/10.1039/C4GC01368A [Google Scholar]
  45. R. D. Rogers, K. R. Seddon, Science, 2003, 302, (5646), 792 LINK https://doi.org/10.1126/science.1090313 [Google Scholar]
  46. A. Jordan, N. Gathergood, Chem. Soc. Rev., 2015, 44, (22), 8200 LINK https://doi.org/10.1039/C5CS00444F [Google Scholar]
  47. S. V. Dzyuba, R. A. Bartsch, Angew. Chem. Int. Ed., 2003, 42, (2), 148 LINK https://doi.org/10.1002/anie.200390070 [Google Scholar]
  48. T. Welton, Chem. Rev., 1999, 99, (8), 2071 LINK https://doi.org/10.1021/cr980032t [Google Scholar]
  49. H. Xue, R. Verma, J. M. Shreeve, J. Fluorine Chem., 2006, 127, (2), 159 LINK https://doi.org/10.1016/j.jfluchem.2005.11.007 [Google Scholar]
  50. P. Pollet, C. A. Eckert, C. L. Liotta, Chem. Sci., 2011, 2, (4), 609 LINK https://doi.org/10.1039/c0sc00568a [Google Scholar]
  51. Y. Huang, E. E. Ureña-Benavides, A. J. Boigny, Z. S. Campbell, F. S. Mohammed, J. S. Fisk, B. Holden, C. A. Eckert, C. L. Liotta, Sustain. Chem. Proc., 2015, 3, 13 LINK https://doi.org/10.1186/s40508-015-0040-7 [Google Scholar]
  52. P. V. Iyer, L. Ananthanarayan, Process Biochem., 2008, 43, (10), 1019 LINK https://doi.org/10.1016/j.procbio.2008.06.004 [Google Scholar]
  53. M. T. Reetz, ‘Recent Advances in Directed Evolution of Stereoselective Enzymes’ in “Directed Enzyme Evolution: Advances and Applications”, ed. M. Alcalde, Springer International Publishing AG, Cham, Switzerland, 2017, pp. 69– 99 LINK https://doi.org/10.1007/978-3-319-50413-1_3 [Google Scholar]
  54. Z. J. Wang, N. E. Peck, H. Renata, F. H. Arnold, Chem. Sci., 2014, 5, (2), 598 LINK https://doi.org/10.1039/C3SC52535J [Google Scholar]
  55. P. S. Coelho, E. M. Brustad, A. Kannan, F. H. Arnold, Science, 2013, 339, (6117), 307 LINK https://doi.org/10.1126/science.1231434 [Google Scholar]
  56. C. C. Farwell, R. K. Zhang, J. A. McIntosh, T. K. Hyster, F. H. Arnold, ACS Cent. Sci., 2015, 1, (2), 89 LINK https://doi.org/10.1021/acscentsci.5b00056 [Google Scholar]
  57. T. K. Hyster, C. C. Farwell, A. R. Buller, J. A. McIntosh, F. H. Arnold, J. Am. Chem. Soc., 2014, 136, (44), 15505 LINK https://doi.org/10.1021/ja509308v [Google Scholar]
  58. S. B. J. Kan, R. D. Lewis, K. Chen, F. H. Arnold, Science, 2016, 354, (6315), 1048 LINK https://doi.org/10.1126/science.aah6219 [Google Scholar]
  59. R. N. Butler, A. G. Coyne, Chem. Rev., 2010, 110, (10), 6302 LINK https://doi.org/10.1021/cr100162c [Google Scholar]
  60. R. N. Butler, A. G. Coyne, Org. Biomol. Chem., 2016, 14, (42), 9945 LINK https://doi.org/10.1039/C6OB01724J [Google Scholar]
  61. S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb, K. B. Sharpless, Angew. Chem. Int. Ed., 2005, 44, (21), 3275 LINK https://doi.org/10.1002/anie.200462883 [Google Scholar]
  62. T. Kitanosono, L. Zhu, C. Liu, P. Xu, S. Kobayashi, J. Am. Chem. Soc., 2015, 137, (49), 15422 LINK https://doi.org/10.1021/jacs.5b11418 [Google Scholar]
  63. A. Fihri, D. Luart, C. Len, A. Solhy, C. Chevrin, V. Polshettiwar, Dalton Trans., 2011, 40, (13), 3116 LINK https://doi.org/10.1039/c0dt01637c [Google Scholar]
  64. H. Y. Fu, L. Chen, H. Doucet, J. Org. Chem., 2012, 77, (9), 4473 LINK https://doi.org/10.1021/jo300528b [Google Scholar]
  65. J. J. Dong, J. Roger, F. Požgan, H. Doucet, Green Chem., 2009, 11, (11), 1832 LINK https://doi.org/10.1039/b915290n [Google Scholar]
  66. R. H. Grubbs, S. Chang, Tetrahedron, 1998, 54, (18), 4413 LINK https://doi.org/10.1016/S0040-4020(97)10427-6 [Google Scholar]
  67. R. Kadyrov, Chem. Eur. J., 2013, 19, (3), 1002 LINK https://doi.org/10.1002/chem.201202207 [Google Scholar]
  68. S. Handa, M. P. Andersson, F. Gallou, J. Reilly, B. H. Lipshutz, Angew. Chem. Int. Ed., 2016, 55, (16), 4914 LINK https://doi.org/10.1002/anie.201510570 [Google Scholar]
  69. S. Handa, Y. Wang, F. Gallou, B. H. Lipshutz, Science, 2015, 349, (6252), 1087 LINK https://doi.org/10.1126/science.aac6936 [Google Scholar]
  70. N. E. Leadbeater, M. Marco, J. Org. Chem., 2003, 68, (14), 5660 LINK https://doi.org/10.1021/jo034230i [Google Scholar]
  71. R. K. Arvela, N. E. Leadbeater, M. S. Sangi, V. A. Williams, P. Granados, R. D. Singer, J. Org. Chem., 2005, 70, (1), 161 LINK https://doi.org/10.1021/jo048531j [Google Scholar]
  72. X. Liu, L. Dai, Nat. Rev. Mater., 2016, 1, 16064 LINK https://doi.org/10.1038/natrevmats.2016.64 [Google Scholar]
  73. T. D. Machajewski, C. H. Wong, Angew. Chem. Int. Ed., 2000, 39, (8), 1352 LINK https://doi.org/10.1002/(SICI)1521-3773(20000417)39:8<1352::AID-ANIE1352>3.0.CO;2-J [Google Scholar]
  74. M. Wiesner, G. Upert, G. Angelici, H. Wennemers, J. Am. Chem. Soc., 2010, 132, (1), 6 LINK https://doi.org/10.1021/ja9068112 [Google Scholar]
  75. I. Ghosh, L. Marzo, A. Das, R. Shaikh, B. König, Acc. Chem. Res., 2016, 49, (8), 1566 LINK https://doi.org/10.1021/acs.accounts.6b00229 [Google Scholar]
  76. L. Li, X. Mu, W. Liu, Y. Wang, Z. Mi, C.-J. Li, J. Am. Chem. Soc., 2016, 138, (18), 5809 LINK https://doi.org/10.1021/jacs.6b02782 [Google Scholar]
  77. D. C. Bailey, S. H. Langer, Chem. Rev., 1981, 81, (2), 109 LINK https://doi.org/10.1021/cr00042a001 [Google Scholar]
  78. I. Vural Gürsel, T. Noël, Q. Wang, V. Hessel, Green Chem., 2015, 17, (4), 2012 LINK https://doi.org/10.1039/C4GC02160F [Google Scholar]
  79. Z. Sun, J. Chen, T. Tu, Green Chem., 2017, 19, (3), 789 LINK https://doi.org/10.1039/C6GC02591A [Google Scholar]
  80. T. Zeng, L. Yang, R. Hudson, G. Song, A. R. Moores, C.-J. Li, Org. Lett., 2011, 13, (3), 442 LINK https://doi.org/10.1021/ol102759w [Google Scholar]
  81. G. Assaf, G. Checksfield, D. Critcher, P. J. Dunn, S. Field, L. J. Harris, R. M. Howard, G. Scotney, A. Scott, S. Mathew, G. M. H. Walker, A. Wilder, Green Chem., 2012, 14, (1), 123 LINK https://doi.org/10.1039/C1GC15921F [Google Scholar]
/content/journals/10.1595/205651317X695866
Loading
/content/journals/10.1595/205651317X695866
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test