Skip to content
Volume 61, Issue 4
  • ISSN: 2056-5135


We herein report on the effect of gamma ray radiation on platinum, osmium, rhodium and palladium salt solutions for synthesis of nanoparticles. Pt, Os, Rh and Pd salt solutions were exposed to intense gamma ray irradiation with doses varying from 70 to 120 kGy. The metal ion salt solutions were easily converted into metal nanoparticles using this radiolysis method. The radiolytic conversion effect produced metal nanoparticles suspended in solution. For Pt, Pd and Rh a metal coating on the edges of the polypropylene tube used as a container was unexpectedly observed but not for the Os solution. X-Ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analyses confirmed that both the coating and the metal nanoparticles correspond to the pure metal coming from the reduction of the initial salt. Quantitative analysis of the XRD patterns shows information about the size and stress of the converted metals. The production of a metal coating on polypropylene plastic tubes by gamma ray irradiation presents an interesting alternative to conventional techniques of metal deposition especially for coating the inner part of a tube.


Article metrics loading...

Loading full text...

Full text loading...



  1. “Processing and Finishing of Polymeric Materials”, in 2 volumes, John Wiley & Sons, Inc, New Jersey, USA, 2011, 1488 pp [Google Scholar]
  2. Volova T. “Polyhydroxyalkanoates – Plastic Materials of the 21st Century: Production, Properties and Applications”, Nova Science Publishers Inc, New York, USA, 2004, 282 pp [Google Scholar]
  3. Klein R. “Laser Welding of Plastics: Materials, Processes and Industrial Applications”, Wiley-VCH Verlag & Co KGaA, Weinheim, Germany, 2012, 260 pp LINK [Google Scholar]
  4. “Handbook of Polyethylene Pipe”, 2nd Edn., Plastics Pipe Institute, Texas, USA, 2009, 620 pp LINK [Google Scholar]
  5. Crawford R. J. ‘General Properties of Plastics’, in “Plastics Engineering”, 3rd Edn., Elsevier Butterworth-Heinemann, Oxford, UK, 1998, 522 pp LINK [Google Scholar]
  6. Delcourt M.-O., Belloni J., Marignier J.-L., Mory C., and Colliex C. Radiat. Phys. Chem., 1984, 23, (4), 485 LINK [Google Scholar]
  7. Marignier J. L., Belloni J., Delcourt M. O., and Chevalier J. P. Nature, 1985, 317, (6035), 344 LINK [Google Scholar]
  8. Belloni J., Marignier J.-L., Delcourt M.-O., and Minana M. National Center for Scientific Research, ‘Non-noble Metal Micro-aggregates, Process for their Manufacture and their Use in the Catalysis of the Photoreduction of Water’, French Patent 8,409,196; 1985 [Google Scholar]
  9. Swallow A. J. “Radiation Chemistry: An Introduction”, Longman Group Ltd, London, UK, 1973, 275 pp [Google Scholar]
  10. Bruneaux J., Cachet H., Froment M., Amblard J., Belloni J., and Mostafavi M. Electrochim. Acta, 1987, 32, (10), 1533 LINK [Google Scholar]
  11. ‘Platinum-Group Metals’, in “Mineral Commodities Summaries 2006”, US Geological Survey (USGS), Reston, Virginia, USA, 2006, p. 126 LINK [Google Scholar]
  12. Hunt L. B., and Lever F. M. Platinum Metals Rev., 1969, 13, (4), 126 LINK [Google Scholar]
  13. Colacot T. J. Platinum Metals Rev., 2002, 46, (2), 82 LINK [Google Scholar]
  14. Roy K., and Lahiri S. Anal. Chem., 2008, 80, (19), 7504 LINK [Google Scholar]
  15. Amblard J., Platzer O., Ridard J., and Belloni J. J. Phys. Chem., 1992, 96, (5), 2341 LINK [Google Scholar]
  16. Treguer M., de Cointet C., Remita H., Khatouri J., Mostafavi M., Amblard J., Belloni J., and de Keyzer R. J. Phys. Chem. B, 1998, 102, (22), 4310 LINK [Google Scholar]
  17. Doudna C. M., Bertino M. F., Blum F. D., Tokuhiro A. T., Lahiri-Dey D., Chattopadhyay S., and Terry J. J. Phys. Chem. B., 2003, 107, (13), 2966 LINK [Google Scholar]
  18. Mirdamadi-Esfahani M., Mostafavi M., Keita B., Nadjo L., Kooyman P., and Remita H. Gold Bull., 2010, 43, (1), 49 LINK [Google Scholar]
  19. Yang Y., Cheng P., and Huang S. J. Alloys Compd., 2016, 688, (Part A), 1172 LINK [Google Scholar]
  20. Fan T.-E., Liu T.-D., Zheng J.-W., Shao G.-F., and Wen Y.-H. J. Alloys Compd., 2016, 685, 1008 LINK [Google Scholar]
  21. Belloni J., Mostafavi M., Remita H., Marignier J.-L., and Delcourt M.-O. New J. Chem., 1998, 22, (11), 1239 LINK [Google Scholar]
  22. Soroushian B., Lampre I., Belloni J., and Mostafavi M. Radiat. Phys. Chem., 2005, 72, (2–3), 111 LINK [Google Scholar]
  23. Belloni J. Catal. Today, 2006, 113, (3–4), 141 LINK [Google Scholar]
  24. Roy K., and Lahiri S. Green Chem., 2006, 8, (12), 1063 LINK [Google Scholar]
  25. Temgire M. K., Bellare J., and Joshi S. S. Adv. Phys. Chem., 2011, 249097 LINK [Google Scholar]
  26. Henglein A. Chem. Rev., 1989, 89, (8), 1861 LINK [Google Scholar]
  27. Choofong S., Suwanmala P., and Pasanphan W. ‘Water-Soluble Chitosan-Gold Composite Nanoparticles: Preparation by Radiolysis Method’, The 18th International Conference on Composite Materials, Jeju, Korea, 21st–26th August, 2011, 6 pp LINK [Google Scholar]
  28. Rao Y. N., Banerjee D., Datta A., Das S. K., Guin R., and Saha A. Radiat. Phys. Chem., 2010, 79, (12), 1240 LINK [Google Scholar]
  29. Biswal J., Ramnani S. P., Tewari R., Dey G. K., and Sabharwal S. Radiat. Phys. Chem., 2010, 79, (4), 441 LINK [Google Scholar]
  30. Gachard E., Remita H., Khatouri J., Keita B., Nadjo L., and Belloni J. New J. Chem., 1998, 22, (11), 1257 LINK [Google Scholar]
  31. Krklješ A. “Radiolytic Synthesis of Nanocomposites Based on Noble Metal Nanoparticles and Natural Polymer, and their Application as Biomaterial”, Report No. IAEA–RC–1207.1, International Atomic Energy Agency (IAEA), Vienna, Austria, 2011, 12 pp LINK [Google Scholar]
  32. Chen Q., Shi J., Zhao R., and Shen X. “Radiolytic Syntheses of Nanoparticles and Inorganic-Polymer Hybrid Microgels”, Report No. IAEA–RC–1124.2, International Atomic Energy Agency (IAEA), Vienna, Austria, 2010, 10 pp LINK [Google Scholar]
  33. Hornebecq V., Antonietti M., Cardinal T., and Treguer-Delapierre M. Chem. Mater., 2003, 15, (10), 1993 LINK [Google Scholar]
  34. Belapurkar A. D., Kapoor S., Kulshreshtha S. K., and Mittal J. P. Mater. Res. Bull., 2001, 36, (1–2), 145 LINK [Google Scholar]
  35. Rojas J. V., and Castano C. H. J. Radioanal. Nucl. Chem., 2014, 302, (1), 555 LINK [Google Scholar]
  36. Zhang X., Ye Y., Wang H., and Yao S. Radiat. Phys. Chem., 2010, 79, (10), 1058 LINK [Google Scholar]
  37. Rojas J. V., and Castano C. H. Radiat. Phys. Chem., 2012, 81, (1), 16 LINK [Google Scholar]
  38. Griffith W. P. Q. Rev. Chem. Soc., 1965, 19, (3), 254 LINK [Google Scholar]
  39. Arblaster J. W. Platinum Metals Rev., 1989, 33, (1), 14 LINK [Google Scholar]
  40. Arblaster J. W. Platinum Metals Rev., 1995, 39, (4), 164 LINK [Google Scholar]
  41. Smith I. C., Carson B. L., and Ferguson T. L. Environ. Health Perspect., 1974, 8, 201 LINK [Google Scholar]
  42. Lutterotti L., Matthies S., and Wenk H. R. ‘MAUD: A Friendly Java Program for Material Analysis Using Diffraction’, Newsletter, No. 21, International Union of Crystallography, Commission on Powder Diffraction, Stuttgart, Germany, 1999, p. 14 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error