Skip to content
1887
Volume 62, Issue 1
  • ISSN: 2056-5135
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journals/10.1595/205651317X696261
2018-01-01
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/1/Darkwa_16a_Imp.html?itemId=/content/journals/10.1595/205651317X696261&mimeType=html&fmt=ahah

References

  1. “Key World Energy Statistics 2016”, International Energy Agency, Paris, France, 2016, 77 pp LINK https://www.iea.org/publications/freepublications/publication/KeyWorld2016.pdf [Google Scholar]
  2. R. A. van Santen, “Catalysis for Renewables: From Feedstock to Energy Production”, eds. G. Centi, Wiley-VCH Verlag GmbH and Co KGaA, Weinheim, Germany, 2007, pp. 146 [Google Scholar]
  3. “World Energy Outlook 2016”, International Energy Agency, Paris, France, 2016 LINK https://www.iea.org/publications/freepublications/publication/WorldEnergyOutlook2016ExecutiveSummaryEnglish.pdf [Google Scholar]
  4. A. Corma, S. Iborra, A. Velty, Chem. Rev., 2007, 107, (6), 2411 LINK https://doi.org/0.1021/cr050989d [Google Scholar]
  5. J. N. Chheda, G. W. Huber, J. A. Dumesic, Angew. Chem. Int. Ed., 2007, 46, (38), 7164 LINK https://doi.org/10.1002/anie.200604274 [Google Scholar]
  6. P. R. Grubber, M. Kamm, “Biorefineries – Industrial Processes and Products: Status Quo and Future Directions”, eds. B. Kamm, 2, Wiley-VCH Verlag GmbH and Co KGaA, Weinheim, Germany, 2006, pp. 1407 [Google Scholar]
  7. R. E. Key, J. J. Bozell, ACS Sustainable Chem. Eng., 2016, 4, (10), 5123 LINK https://doi.org/10.1021/acssuschemeng.6b01319 [Google Scholar]
  8. S. Zhou, Y. Xue, A. Sharma, X. Bai, ACS Sustainable Chem. Eng., 2016, 4, (12), 6608 LINK https://doi.org/10.1021/acssuschemeng.6b01488 [Google Scholar]
  9. A. M. Robinson, J. E. Hensley, J. W. Medlin, ACS Catal., 2016, 6, (8), 5026 LINK https://doi.org/10.1021/acscatal.6b00923 [Google Scholar]
  10. C. O. Tuck, E. Pérez, I. T. Horvárth, R. A. Sheldon, M. Poliakoff, Science, 2012, 337, (6095), 695 LINK https://doi.org/10.1126/science.1218930 [Google Scholar]
  11. M. A. Carriquiry, X. Du, G. R. Timilsina, Energ. Policy, 2011, 39, (7), 4222 LINK https://doi.org/10.1016/j.enpol.2011.04.036 [Google Scholar]
  12. S. Dutta, ChemSusChem, 2012, 5, (11), 2125 LINK https://doi.org/10.1002/cssc.201200596 [Google Scholar]
  13. P. J. Deuss, K. Barta, J. G. de Vries, Catal. Sci. Technol., 2014, 4, (5), 1174 LINK https://doi.org/10.1039/C3CY01058A [Google Scholar]
  14. J. N. Chheda, J. A. Dumesic, Catal. Today, 2007, 123, (1–4), 59 LINK https://doi.org/10.1016/j.cattod.2006.12.006 [Google Scholar]
  15. D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Angew. Chem. Int. Ed., 2005, 44, (22), 3358 LINK https://doi.org/10.1002/anie.200460587 [Google Scholar]
  16. Ó. J. Sànchez, C. A. Cardona, Bioresource Technol., 2008, 99, (13), 5270 LINK https://doi.org/10.1016/j.biortech.2007.11.013 [Google Scholar]
  17. ‘First Commercial-Scale Cellulosic Ethanol Plant in the U.S. Opens for Business’, Koninklijke DSM NV, Heerlen, Netherlands, 3rd September, 2014 LINK http://www.dsm.com/corporate/media/informationcenter-news/2014/09/29-14-first-commercial-scale-cellulosic-ethanol-plant-in-the-united-states-open-for-business.html [Google Scholar]
  18. ‘A New Era Begins: Crescentino: World’s First Advanced Biofuels Facility’, ETIP Bioenergy-SABS:http://www.biofuelstp.eu/presentations/crescentino-presentation.pdf (Accessed on 17th August 2017) [Google Scholar]
  19. American Process Inc,, Atlanta, USA:http://www.americanprocess.com/ (Accessed on 17th August 2017)
  20. ‘Commercial Cellulosic Ethanol Plants in Brazil’ and ‘Cellulosic Ethanol in Canada’, ETIP Bioenergy-SABS:http://www.biofuelstp.eu/cellulosic-ethanol.html#ce8 (Accessed on 17th August 2017) [Google Scholar]
  21. Anellotech Inc,, New York, USA:http://anellotech.com/technology (Accessed on 25th August 2017)
  22. A. A. Rosatella, S. P. Simeonov, R. F. M. Frade, C. A. M. Afonso, Green Chem., 2011, 13, (4), 75 LINK https://doi.org/10.1039/C0GC00401D [Google Scholar]
  23. D. M. Alonso, J. Q. Bond, J. A. Dumesic, Green Chem., 2010, 12, (9), 1493 LINK https://doi.org/10.1039/C004654J [Google Scholar]
  24. ‘Cellulosic Ethanol Technology: Ongoing Research and Novel Pathways’, ETIP Bioenergy-SABS:http://www.biofuelstp.eu/cellulosic-ethanol.html#ce6 (Accessed on 17th August 2017) [Google Scholar]
  25. ‘Iogen Announces New Drop-In Cellulosic Biofuel’, Iogen Corp, Ottawa, Canada, 22nd January, 2014 LINK http://www.iogen.ca/media-resources/press_releases/2014_Iogen_pr_jan22.pdf [Google Scholar]
  26. G. W. Huber, J. A. Dumesic, Catal. Today, 2006, 111, (1–2), 119 LINK https://doi.org/10.1016/j.cattod.2005.10.010 [Google Scholar]
  27. L. Vilcocq, A. Cabiac, C. Especel, E. Guillon, D. Duprez, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles, 68, (5), 841 LINK https://doi.org/10.2516/ogst/2012073 [Google Scholar]
  28. Y.-H. P. Zhang, L. R. Lynd, Biotechnol. Bioeng., 2004, 88, (7), 797 LINK https://doi.org/10.1002/bit.20282 [Google Scholar]
  29. O. O. James, S. Maity, L. A. Usman, K. O. Ajanaku, O. O. Ajani, T. O. Siyanbola, S. Sahu, R. Chaubey, Energy Environ. Sci., 2010, 3, (12), 1833 LINK https://doi.org/10.1039/B925869H [Google Scholar]
  30. W. L. Faith, Ind. Eng. Chem., 1945, 37, (1), 9 LINK https://doi.org/10.1021/ie50421a004 [Google Scholar]
  31. K. R. Enslow, A. T. Bell, RSC Adv., 2012, 2, (26), 10028 LINK https://doi.org/10.1039/C2RA21650G [Google Scholar]
  32. N. S. Kapu, H. L. Trajano, Biofuels, Bioprod. Bioref., 2014, 8, (6), 857 LINK https://doi.org/10.1002/bbb.1517 [Google Scholar]
  33. C. Li, Z. K. Zhao, Adv. Synth. Catal., 2007, 349, (11–12), 1847 LINK https://doi.org/10.1002/adsc.200700259 [Google Scholar]
  34. C. Moreau, R. Durand, J. Duhamet, P. Rivalier, J. Carbohyd. Chem., 1997, 16, (4–5), 709 LINK https://doi.org/10.1080/07328309708007350 [Google Scholar]
  35. P. E. Linnett, J. P. M. Sanders, Gist-Brocades NV,, ‘Process for the Preparation of Oligosaccharides-Containing Products from Biomass’, US Patent Appl. 1987/4,677,198 LINK https://doi.org/10.1021/ie50327a002 [Google Scholar]
  36. F. Bergius, Ind. Eng. Chem., 1937, 29, (3), 247 [Google Scholar]
  37. R. P. Swatloski, S. K. Spear, J. D. R. Holbrey, R. D. Rogers, J. Am. Chem. Soc., 2002, 124, (18), 4974 LINK https://doi.org/10.1021/ja025790m [Google Scholar]
  38. H. F. N. de Oliveira, C. Farés, R. Rinaldi, Chem. Sci., 2015, 6, (9), 5215 LINK https://doi.org/10.1039/C5SC00393H [Google Scholar]
  39. C. Tagusagawa, A. Takagaki, A. Iguchi, K. Takanabe, J. N. Kondo, K. Ebitani, S. Hayashi, T. Tatsumi, K. Domen, Angew. Chem. Int. Ed., 2010, 49, (6), 1128 LINK https://doi.org/10.1002/anie.200904791 [Google Scholar]
  40. Y. Jiang, X. Li, X. Wang, L. Meng, H. Wang, G. Peng, X. Mang, X. Mu, Green Chem., 2012, 14, (8), 2162 LINK https://doi.org/10.1039/C2GC35306G [Google Scholar]
  41. A. Takagaki, C. Tagusagawa, K. Domen, Chem. Commun., 2008, (42), 5363 LINK https://doi.org/10.1039/B810346A [Google Scholar]
  42. D.-M. Lai, L. Deng, J. Li, B. Liao, Q.-X. Guo, Y. Fu, ChemSusChem, 2011, 4, (1), 55 LINK https://doi.org/10.1002/cssc.201000300 [Google Scholar]
  43. R. Rinaldi, R. Palkovits, F. Schüth, Angew. Chem. Int. Ed., 2008, 47, (42), 8047 LINK https://doi.org/10.1002/anie.200802879 [Google Scholar]
  44. K.-I. Shimizu, H. Furukawa, N. Kobayashi, Y. Itaya, A. Satsuma, Green Chem., 2009, 11, (10), 1627 LINK https://doi.org/10.1039/B913737H [Google Scholar]
  45. A. Onda, T. Ochi, K. Yanagisawa, Green Chem., 2008, 10, (10), 1033 LINK https://doi.org/10.1039/B808471H [Google Scholar]
  46. K. Zhuo, Q. Du, G. Bai, C. Wang, Y. Chen, J. Wang, Carbohyd. Polym., 2015, 115, 49 LINK https://doi.org/10.1016/j.carbpol.2014.08.078 [Google Scholar]
  47. Y. Liu, W. Xiao, S. Xia, P. Ma, Carbohyd. Polym., 2013, 92, (1), 218 LINK https://doi.org/10.1016/j.carbpol.2012.08.095 [Google Scholar]
  48. M. E. Zakrzewska, E. Bogel-Łukasik, R. Bogel-Łukasik, Energy Fuels, 2010, 24, (2), 737 LINK https://doi.org/10.1021/ef901215m [Google Scholar]
  49. H. Kobayashi, T. Komanoya, K. Hara, A. Fukuoka, ChemSusChem, 2010, 3, (4), 440 LINK https://doi.org/10.1002/cssc.200900296 [Google Scholar]
  50. T. Komanoya, H. Kobayashi, K. Hara, W.-J. Chun, A. Fukuoka, Appl. Catal. A: Gen., 2011, 407, (1–2), 188 LINK https://doi.org/10.1016/j.apcata.2011.08.039 [Google Scholar]
  51. Y. Yuan, J. Wang, N. Fu, S. Zang, Catal. Commun., 2016, 76, 46 LINK https://doi.org/10.1016/j.catcom.2015.12.024 [Google Scholar]
  52. J. Wang, M. Zhou, Y. Yuan, Q. Zhang, X. Fang, S. Zang, Bioresour. Technol., 2015, 197, 42 LINK https://doi.org/10.1016/j.biortech.2015.07.110 [Google Scholar]
  53. Y. Su, H. M. Brown, G. Li, X.-D. Zhou, J. E. Amonette, J. L. Fulton, D. M. Camaioni, Z. C. Zhang, Appl. Catal. A: Gen., 2011, 391, (1–2), 436 LINK https://doi.org/10.1016/j.apcata.2010.09.021 [Google Scholar]
  54. L. W. Kroh, Food Chem., 1994, 51, (4), 373 LINK https://doi.org/10.1016/0308-8146(94)90188-0 [Google Scholar]
  55. C. Janzowski, V. Glaab, E. Samimi, J. Schlatter, G. Eisenbrand, Food Chem. Toxicol., 2000, 38, (9), 801 LINK https://doi.org/10.1016/S0278-6915(00)00070-3 [Google Scholar]
  56. G. Arribas-Lorenzo, F. J. Morales, Food Chem. Toxicol., 2010, 48, (2), 644 LINK https://doi.org/10.1016/j.fct.2009.11.046 [Google Scholar]
  57. T. Husøy, M. Haugen, M. Murkovic, D. Jöbstl, L. H. Stølen, J. Bjellaas, C. Rønningborg, H. Glatt, J. Alexander, Food Chem. Toxicol., 2008, 46, (12), 3697 LINK https://doi.org/10.1016/j.fct.2008.09.048 [Google Scholar]
  58. M. S. Feather, J. F. Harris, Adv. Carbohyd. Chem. Biochem., 1973, 28, 161 LINK https://doi.org/10.1016/S0065-2318(08)60383-2 [Google Scholar]
  59. F. H. Newth, Adv. Carbohyd. Chem., 1951, 6, 83 LINK https://doi.org/10.1016/S0096-5332(08)60064-8 [Google Scholar]
  60. E. F. L. J. Anet, Adv. Carbohyd. Chem., 1964, 19, 181 LINK https://doi.org/10.1016/S0096-5332(08)60282-9 [Google Scholar]
  61. M. J. Antal, W. S. L. Mok, G. N. Richards, Carbohyd. Res., 1990, 199, (1), 91 LINK https://doi.org/10.1016/0008-6215(90)84096-D [Google Scholar]
  62. Y. Román-Leshkov, M. E. Davis, ACS Catal., 2011, 1, (11), 1566 LINK https://doi.org/10.1021/cs200411d [Google Scholar]
  63. C. J. Knill, J. F. Kennedy, Carbohyd. Polym., 2003, 51, (3), 281 LINK https://doi.org/10.1016/S0144-8617(02)00183-2 [Google Scholar]
  64. B. Y. Yang, R. Montgomery, Carbohyd. Res., 1996, 280, (1), 27 LINK https://doi.org/10.1016/0008-6215(95)00294-4 [Google Scholar]
  65. J. C. Speck, R. S. Tipson, ‘The Lobry DeBruyn-Alberda Van Ekenstein Transformation’, in “Advances in Carbohydrate Chemistry”, eds. M. L. Wolfrom, 13, Academic Press Inc, New York, USA, 1958, pp. 63103 [Google Scholar]
  66. C. Liu, J. M. Carraher, J. L. Swedberg, C. R. Herndon, C. N. Fleitman, J.-P. Tessonnier, ACS Catal., 2014, 4, (12), 4295 LINK https://doi.org/10.1021/cs501197w [Google Scholar]
  67. S. Despax, B. Estrine, N. Hoffmann, J. Le Bras, S. Marinkovic, J. Muzart, Catal. Commun., 2013, 39, 35 LINK https://doi.org/10.1016/j.catcom.2013.05.004 [Google Scholar]
  68. V. Choudhary, S. I. Sandler, D. G. Vlachos, ACS Catal., 2012, 2, (9), 2022 LINK https://doi.org/10.1021/cs300265d [Google Scholar]
  69. Y. J. Pagán-Torres, T. Wang, J. M. R. Gallo, B.H. Shanks, J. A. Dumesic, ACS Catal., 2012, 2, (6), 930 LINK https://doi.org/10.1021/cs300192z [Google Scholar]
  70. R-J. van Putten, J. C. van der Waal, E. de Jong, C. B. Rasrendra, H. J. Heeres, J. G. de Vries, Chem. Rev., 2013, 113, (3), 1499 LINK https://doi.org/10.1021/cr300182k [Google Scholar]
  71. H. Zhao, J. E. Holladay, H. Brown, Z. C. Zhang, Science, 2007, 316, (5831), 1597 LINK https://doi.org/10.1126/science.1141199 [Google Scholar]
  72. Y. Su, H. M. Brown, X. Huang, X.-D. Zhou, J. E. Amonette, Z. C. Zhang, Appl. Catal. A: Gen., 2009, 361, (1–2), 117 LINK https://doi.org/10.1016/j.apcata.2009.04.002 [Google Scholar]
  73. C. Fan, H. Guan, H. Zhang, J. Wang, S. Wang, X. Wang, Biomass Bioenerg., 2011, 35, (7), 2659 LINK https://doi.org/10.1016/j.biombioe.2011.03.004 [Google Scholar]
  74. B. Kim, J. Jeong, D. Lee, S. Kim, H.-J. Yoon, Y.-S. Lee, J. K. Cho, Green Chem., 2011, 13, (6), 1503 LINK https://doi.org/10.1039/C1GC15152E [Google Scholar]
  75. Z.-D. Ding, J.-C. Shi, J.-J. Xiao, W.-X. Gu, C.-G. Zheng, H.-J. Wang, Carbohyd. Polym., 2012, 90, (2), 792 LINK https://doi.org/10.1016/j.carbpol.2012.05.083 [Google Scholar]
  76. X. Qi, M. Watanabe, T. M. Aida, R. L. Smith, Green Chem., 2009, 11, (9), 1327 LINK https://doi.org/10.1039/B905975J [Google Scholar]
  77. Z. Wei, Y. Li, D. Thushara, Y. Liu, Q. Ren, J. Taiwan Inst. Chem. Eng., 2011, 42, (2), 363 LINK https://doi.org/10.1016/j.jtice.2010.10.004 [Google Scholar]
  78. C. M. Cai, T. Zhang, R. Kumar, C. E. Wyman, Green Chem., 2013, 15, (11), 3140 LINK https://doi.org/10.1039/C3GC41214H [Google Scholar]
  79. L. Zhang, H. Yu, P. Wang, Y. Li, Bioresource Technol., 2014, 151, 355 LINK https://doi.org/10.1016/j.biortech.2013.10.099 [Google Scholar]
  80. L. Zhang, H. Yu, P. Wang, H. Dong, X. Peng, Bioresource Technol., 2013, 130, 110 LINK https://doi.org/10.1016/j.biortech.2012.12.018 [Google Scholar]
  81. F. Perez, M. A. Fraga, Green Chem., 2014, 16, (8), 3942 LINK https://doi.org/10.1039/C4GC00398E [Google Scholar]
  82. D. T. Win, AU J. Technol., 2005, 8, (4), 185 LINK http://www.journal.au.edu/au_techno/2005/apr05/vol8no4_abstract04.pdf [Google Scholar]
  83. K. M. Rapp, Süddeutsche Zucker AG,, ‘Process for Preparing Pure 5-Hydroxymethylfurfuraldehyde’, US Patent Appl. 1988/4,740,605 [Google Scholar]
  84. ‘Specifications – 5-Hydroxymethylfurfural’, AVA Biochem BSL AG, Switzerland:http://www.ava-biochem.com/pages/en/products/5-hmf/specifications.php (Accessed on 24th August 2017) [Google Scholar]
  85. D. Reichert, M. Sarich, F. Merz, Evonik Degussa GmbH,, ‘Method for Producing Enantiomer 5-Hydroxymethylfurfural with 5-Acyloxymethylfurfural as Intermediate’, Danish Patent 1,958,944; 2008 [Google Scholar]
  86. G. Fleche, A. Gaset, J.-P. Gorrichon, E. Truchot, P. Sicard, Roquette Frères,, ‘Process for Manufacturing 5-Hydroxymethylfurfural’, US Patent Appl. 1982/4,339,381 [Google Scholar]
  87. C. M’Bazoa, F. Raymond, L. Rigal, A. Gaset, Furchim,, ‘Process for the Manufacture of High Purity Hydroxymethylfurfural (HMF)’, French Patent Appl. 1990/2,669,635 [Google Scholar]
  88. R. Palkovits, ChemSusChem, 2015, 8, (5), 755 LINK https://doi.org/10.1002/cssc.201403431 [Google Scholar]
  89. L. Hu, L. Lin, S. Liu, Ind. Eng. Chem. Res., 2014, 53, 9969 LINK https://doi.org/10.1021/ie5013807 [Google Scholar]
  90. X. Li, P. Jia, T. Wang, ACS Catal., 2016, 6, 7621 LINK https://doi.org/10.1021/acscatal.6b01838 [Google Scholar]
  91. Y. Román-Leshkov, C. J. Barnett, Z. Y. Liu, J. A. Dumesic, Nature, 2007, 447, 982 LINK https://doi.org/10.1038/nature05923 [Google Scholar]
  92. A. Bohre, S. Dutta, B. Saha, M. M. Abu-Omar, ACS Sustainable Chem. Eng., 2015, 3, (7), 1263 LINK https://doi.org/10.1021/acssuschemeng.5b00271 [Google Scholar]
  93. J. B. Binder, R. T. Raines, J. Am. Chem. Soc., 2009, 131, (5), 1979 LINK https://doi.org/10.1021/ja808537j [Google Scholar]
  94. G.-H. Wang, J. Hilgert, F. H. Richter, F. Wang, H.-J. Bongard, B. Spliethoff, C. Weidenthaler, F. Schüth, Nature Mater., 2014, 13, (3), 293 LINK https://doi.org/10.1038/nmat3872 [Google Scholar]
  95. S. Nishimura, N. Ikeda, K. Ebitani, Catal. Today, 2014, 232, 89 LINK https://doi.org/10.1016/j.cattod.2013.10.012 [Google Scholar]
  96. Y. Zu, P. Yang, J. Wang, X. Liu, J. Ren, G. Lu, Y. Wang, Appl. Catal. B: Environ., 2014, 146, 244 LINK https://doi.org/10.1016/j.apcatb.2013.04.026 [Google Scholar]
  97. B. Saha, C. M. Bohn, M. M. Abu-Omar, ChemSusChem, 2014, 7, (11), 3095 LINK https://doi.org/10.1002/cssc.201402530 [Google Scholar]
  98. T. H. Parsell, B. C. Owen, I. Klein, T. M. Jarrell, C. L. Marcum, L. J. Haupert, L. M. Amundson, H. I. Kenttämaa, F. Ribeiro, J. T. Miller, M. M. Abu-Omar, Chem. Sci., 2013, 4, (2), 806 LINK https://doi.org/10.1039/C2SC21657D [Google Scholar]
  99. A. Sen, W. Yang, Penn State Research Foundation,, ‘One-Step Catalytic Conversion of Biomass-Derived Carbohydrates to Liquid Fuels’, US Patent Appl. 2010/0,307,050 LINK https://doi.org/10.1002/chem.201201522 [Google Scholar]
  100. M. R. Grochowski, W. Yang, A. Sen, Chem. Eur. J., 2012, 18, (39), 12363 [Google Scholar]
  101. T. Buntara, S. Noel, P. H. Phua, I. Melián-Cabrera, J. G. de Vries, H. J. Heeres, Angew. Chem. Int. Ed., 2011, 50, (31), 7083 LINK https://doi.org/10.1002/anie.201102156 [Google Scholar]
  102. S. De, S. Dutta, B. Saha, ChemSusChem, 2012, 5, (9), 1826 LINK https://doi.org/10.1002/cssc.201200031 [Google Scholar]
  103. J. Jae, W. Zhang, R. F. Lobo, D. G. Vlachos, ChemSusChem, 2013, 6, (7), 1158 LINK https://doi.org/10.1002/cssc.201300288 [Google Scholar]
  104. S. Xiu, A. Shahbazi, Renew. Sustain. Energy Rev., 2012, 16, (7), 4406 LINK https://doi.org/10.1016/j.rser.2012.04.028 [Google Scholar]
  105. X. Chen, H. Li, H. Luo, M. Qiao, Appl. Catal. A: Gen., 2002, 233, (1–2), 13 LINK https://doi.org/10.1016/S0926-860X(02)00127-8 [Google Scholar]
  106. Q. Sun, S. Liu, X. Yao, Y. Su, Z. Zhang, Hecheng Huaxue, 1996, (2), 146 [Google Scholar]
  107. Y. Ren, B. Liu, Z. Zhang, J. Lin, J. Ind. Eng. Chem., 2015, 21, 1127 LINK https://doi.org/10.1016/j.jiec.2014.05.024 [Google Scholar]
  108. M. Balakrishnan, E. R. Sacia, A. T. Bell, Green Chem., 2012, 14, 1626 LINK https://doi.org/10.1039/C2GC35102A [Google Scholar]
  109. S. Sitthisa, T. Pham, T. Prasomsri, T. Sooknoi, R. G. Mallinson, D. E. Resasco, J. Catal., 2011, 280, (1), 17 LINK https://doi.org/10.1016/j.jcat.2011.02.006 [Google Scholar]
  110. V. V. Pushkarev, N. Musselwhite, K. An, S. Alayoglu, G. A. Somorjai, Nano Lett., 2012, 12, (10), 5196 LINK https://doi.org/10.1021/nl3023127 [Google Scholar]
  111. Y. Nakagawa, K. Tomishige, Catal. Today, 2012, 195, (1), 136 LINK https://doi.org/10.1016/j.cattod.2012.04.048 [Google Scholar]
  112. S. Liu, Y. Amada, M. Tamura, Y. Nakagawa, K. Tomishige, Green Chem., 2014, 16, (2), 617 LINK https://doi.org/10.1039/C3GC41335G [Google Scholar]
  113. Z. J. Brentzel, K. J. Barnett, K. Huang, C. T. Maravelias, J. A. Dumesic, G. W. Huber, ChemSusChem, 2017, 10, (7), 1351 LINK https://doi.org/10.1002/cssc.201700178 [Google Scholar]
  114. M. Hronec, K. Fulajtarová, Catal. Commun., 2012, 24, 100 LINK https://doi.org/10.1016/j.catcom.2012.03.020 [Google Scholar]
  115. E. Drent, W. W. Jager, Shell Oil Company,, ‘Hydrogenolsis of Glycerol’, US Patent Appl. 2000/6,080,898 [Google Scholar]
  116. T. M. Che, Celanese Corp,, ‘Production of Propanediols’, US Patent Appl. 1987/4,642,394 [Google Scholar]
  117. A. S. Godwa, S. Parkin, F. T. Ladipo, Appl. Organomet. Chem., 2012, 26, (2), 86 LINK https://doi.org/10.1002/aoc.2819 [Google Scholar]
  118. M. Schlaf, Dalton Trans., 2006, (39), 4645 LINK https://doi.org/10.1039/B608007C [Google Scholar]
  119. M. Schlaf, P. Ghosh, P. J. Fagan, E. Hauptman, R. M. Bullock, Angew. Chem. Int. Ed., 2001, 40, (20), 3887 LINK https://doi.org/10.1002/1521-3773(20011015)40:20<3887::AID-ANIE3887>3.0.CO;2-Q [Google Scholar]
  120. M. Schlaf, P. Ghosh, P. Fagan, E. Hauptman, R. M. Bullock, Adv. Synth. Catal., 2009, 351, (5), 789 LINK https://doi.org/10.1002/adsc.200800685 [Google Scholar]
  121. D. B. Eremin, V. P. Ananikov, Coord. Chem. Rev., 2017, 346, 2 LINK https://doi.org/10.1016/j.ccr.2016.12.021 [Google Scholar]
  122. L. Bui, H. Luo, W. R. Gunther, Y. Román-Leshkov, Angew. Chem., 2013, 125, (31), 8180 LINK https://doi.org/10.1002/ange.201302575 [Google Scholar]
  123. H. P. Winoto, B. S. Ahn, J. Jae, J. Ind. Eng. Chem., 2016, 40, 62 LINK https://doi.org/10.1016/j.jiec.2016.06.007 [Google Scholar]
  124. M. J. Climent, A. Corma, S. Iborra, Green Chem., 2014, 16, (2), 615 LINK https://doi.org/10.1039/C3GC41492B [Google Scholar]
  125. J.-P. Lange, R. Price, P. M. Ayoub, J. Louis, L. Petrus, L. Clark, H. Gosselink, Angew. Chem. Int. Ed., 2010, 49, (26), 4479 LINK https://doi.org/10.1002/anie.201000655 [Google Scholar]
  126. C. R. Patil, P. S. Niphadkar, V. V. Bokade, P. N. Joshi, Catal. Commun., 2014, 43, 188 LINK https://doi.org/10.1016/j.catcom.2013.10.006 [Google Scholar]
  127. H. Joshi, B. R. Moser, J. Toler, W. F. Smith, T. Walker, Biomass Bioenerg., 2011, 35, (7), 3262 LINK https://doi.org/10.1016/j.biombioe.2011.04.020 [Google Scholar]
  128. ‘Caserta Production Plant: Innovation and R&D’, GFBIochemicals, Milan, Italy:http://www.gfbiochemicals.com/company/#caserta-plant (Accessed on 25 August 2017) [Google Scholar]
  129. I. T. Horváth, Green Chem., 2008, 10, (10), 1024 LINK https://doi.org/10.1039/B812804A [Google Scholar]
  130. I. T. Horváth, P. T. Anastas, Chem. Rev., 2007, 107, (6), 2169 LINK https://doi.org/10.1021/cr078380v [Google Scholar]
  131. V. Fábos, L. T. Mika, I. T. Horváth, Organometallics, 2014, 33, 181 LINK https://doi.org/10.1021/om400938h [Google Scholar]
  132. J. Q. Bond, D. M. Alonso, D. Wang, R. M. West, J. A. Dumesic, Science, 2010, 327, (5969), 1110 LINK https://doi.org/10.1126/science.1184362 [Google Scholar]
  133. M. Wąchała, J. Grams, W. Kwapiński, A. M. Ruppert, 2016, 41, (20), 8688 LINK https://doi.org/10.1016/j.ijhydene.2015.12.089
  134. A. P. Dunlop, J. W. Madden, ‘Process of Preparing Gammavalerolactone’, US Patent Appl. 1957/2,786,852 [Google Scholar]
  135. L. E. Manzer, Appl. Catal. A: Gen., 2004, 272, (1–2), 249 LINK https://doi.org/10.1016/j.apcata.2004.05.048 [Google Scholar]
  136. R. A. Bourne, J. G. Stevens, J. Ke, M. Poliakoff, Chem. Commun., 2007, (44), 4632 LINK https://doi.org/10.1039/B708754C [Google Scholar]
  137. A. M. Hengne, N. S. Biradar, C. V. Rode, Catal. Lett., 2012, 142, (6), 779 LINK https://doi.org/10.1007/s10562-012-0822-4 [Google Scholar]
  138. S. G. Wettstein, D. M. Alonso, Y. Chong, J. A. Dumersic, Energy Environ. Sci., 2012, 5, (8), 8199 LINK https://doi.org/10.1039/C2EE22111J [Google Scholar]
  139. Z.-P. Yan, L. Lin, S. Liu, Energy Fuels, 2009, 23, (8), 3853 LINK https://doi.org/10.1021/ef900259h [Google Scholar]
  140. J. Tan, J. Cui, T. Deng, X. Cui, G. Ding, Y. Zhu, Y. Li, ChemCatChem, 2015, 7, (3), 508 LINK https://doi.org/10.1002/cctc.201402834 [Google Scholar]
  141. J. Fu, D. Sheng, X. Lu, Catalysts, 2016, 6, (1), 6 LINK https://doi.org/10.3390/catal6010006 [Google Scholar]
  142. J. Deng, Y. Wang, T. Pan, Q. Xu, Q.-X. Guo, Y. Fu, ChemSusChem, 2013, 6, (7), 1163 LINK https://doi.org/10.1002/cssc.201300245 [Google Scholar]
  143. H. Mehdi, V. Fábos, R. Tuba, A. Bodor, L. T. Mika, I. T. Horváth, Top. Catal., 2008, 48, (1–4), 49 LINK https://doi.org/10.1007/s11244-008-9047-6 [Google Scholar]
  144. F. M. A. Geilen, B. Engendahl, A. Harwardt, W. Marquardt, J. Klankermayer, W. Leitner, Angew. Chem. Int. Ed., 2010, 49, (32), 5510 LINK https://doi.org/10.1002/anie.201002060 [Google Scholar]
  145. C. Delhomme, L.-A. Schaper, M. Zhang-Preße, G. Raudaschl-Sieber, D. Weuster-Botz, F. E. Kühn, J. Organomet. Chem., 2013, 724, 297 LINK https://doi.org/10.1016/j.jorganchem.2012.10.030 [Google Scholar]
  146. J. M. Tukacs, D. Király, A. Strádi, G. Novodarszki, Z. Eke, G. Dibó, T. Kégl, L. T. Mika, Green Chem., 2012, 14, (7), 2057 LINK https://doi.org/10.1039/C2GC35503E [Google Scholar]
  147. L. Deng, J. Li, D.-M. Lai, Y. Fu, Q.-X. Guo, Angew. Chem. Int. Ed., 2009, 48, (35), 6529 LINK https://doi.org/10.1002/anie.200902281 [Google Scholar]
  148. W.-P. Wu, Y.-J. Xu, S.-W. Chang, J. Deng, Y. Fu, 2016, ChemCatChem, 8, (21), 3375 LINK https://doi.org/10.1002/cctc.201601009 [Google Scholar]
  149. W. Li, J.-H. Xie, H. Lin, Q.-L. Zhou, Green Chem., 2012, 14, (9), 2388 LINK https://doi.org/10.1039/C2GC35650C [Google Scholar]
  150. B. Y. Tay, C. Wang, P. H. Phua, L. P. Stubbs, H. V. Huynh, Dalton Trans., 2016, 45, (8), 3558 LINK https://doi.org/10.1039/C5DT03366G [Google Scholar]
  151. G. Amenuvor, B. C. E. Makhubela, J. Darkwa, ACS Sustainable Chem. Eng., 2016, 4, (11), 6010 LINK https://doi.org/10.1021/acssuschemeng.6b01281 [Google Scholar]
  152. J. Geboers, S. Van de Vyver, K. Carpentier, K. de Blochouse, P. Jacobs, B. Sels, Chem. Commun., 2010, 46, (20), 3577 LINK https://doi.org/10.1039/C001096K [Google Scholar]
  153. R. Palkovits, K. Tajvidi, A. M. Ruppert, J. Procelewska, Chem. Commun., 2011, 47, (1), 576 LINK https://doi.org/10.1039/C0CC02263B [Google Scholar]
  154. C. Luo, S. Wang, H. Liu, Angew. Chem. Int. Ed., 2007, 46, (40), 7636 LINK https://doi.org/10.1002/anie.200702661 [Google Scholar]
  155. T. Komanoya, H. Kobayashi, K. Hara, W.-J. Chun, A. Fukuoka, ChemCatChem, 2014, 6, (1), 230 LINK https://doi.org/10.1002/cctc.201300731 [Google Scholar]
  156. D. Wang, W. Niu, M. Tan, M. Wu, X. Zheng, Y. Li, N. Tsubaki, ChemSusChem., 2014, 7, (5), 1398 LINK https://doi.org/10.1002/cssc.201301123 [Google Scholar]
  157. S. P. Crabtree, D. V. Tyers, McDonnell Boehnen Hulbert and Berghoff LLP,, ‘Hydrogenolysis of Sugar Feedstocks’, US Patent Appl. 2007/0,123,739 [Google Scholar]
  158. M. A. Andrews, S. A. Klaeren, J. Am. Chem. Soc., 1989, 111, (11), 4131 LINK https://doi.org/10.1021/ja00193a073 [Google Scholar]
  159. A. W. Heinen, G. Papadogianakis, R. A. Sheldon, J. A. Peters, H. van Bekkum, J. Mol. Catal. A: Chem., 1999, 142, (1), 17 LINK https://doi.org/10.1016/S1381-1169(98)00288-X [Google Scholar]
  160. W. M. Kruse, ICI America Inc,, ‘Homogeneous Hydrogenation of Saccharides using Ruthenium Triphenyl Phosphine Complex’, US Patent Appl. 1976/3,935,284 [Google Scholar]
  161. G. Weng, X. Tan, H. Lv, M. Zhao, M. Wu, J. Zhuo, X. Zhang, Ind. Eng. Chem. Res., 2016, 55, (18), 5263 LINK https://doi.org/10.1021/acs.iecr.6b00518 [Google Scholar]
  162. J. R. Dethlefsen, P. Fristrup, ChemSusChem, 2015, 8, (5), 767 LINK https://doi.org/10.1002/cssc.201402987 [Google Scholar]
  163. N. Ji, T. Zhang, M. Zheng, A. Wang, H. Wang, X. Wang, J. G. Chen, Angew. Chem. Int. Ed., 2008, 47, (44), 8510 LINK https://doi.org/10.1002/anie.200803233 [Google Scholar]
  164. A. Wang, T. Zhang, Acc. Chem. Res., 2013, 46, (7), 1377 LINK https://doi.org/10.1021/ar3002156 [Google Scholar]
  165. I. Delidovich, P. J. C. Hausoul, L. Deng, R. Pfuützenreuter, M. Rose, R. Palkovits, Chem. Rev., 2016, 116, (3), 1540 LINK https://doi.org/10.1021/acs.chemrev.5b00354 [Google Scholar]
  166. K. Wang, M. C. Hawley, T. D. Furney, Ind. Eng. Chem. Res., 1995, 34, (11), 3766 LINK https://doi.org/10.1021/ie00038a012 [Google Scholar]
  167. L. Ge, X. Wu, J. Chen, J. Wu, J. Biomater. Nanobiotech., 2011, 2, (3), 335 LINK https://doi.org/10.4236/jbnb.2011.23041 [Google Scholar]
  168. Z. Tai, J. Zhang, A. Wang, M. Zheng, T. Zhang, Chem. Commun., 2012, 48, (56), 7052 LINK https://doi.org/10.1039/C2CC32305B [Google Scholar]
  169. Y. Liu, C. Luo, H. Liu, Angew. Chem. Int. Ed., 2012, 51, (13), 3249 LINK https://doi.org/10.1002/anie.201200351 [Google Scholar]
  170. J. H. Zhou, M. G. Zhang, L. Zhao, P. Li, X. G. Zhou, W. K. Yuan, Catal. Today, 2009, 147, S225 LINK https://doi.org/10.1016/j.cattod.2009.07.057 [Google Scholar]
  171. J. Sun, H. Liu, Green Chem., 2011, 13, (1), 135 LINK https://doi.org/10.1039/C0GC00571A [Google Scholar]
  172. T. A. Werpy, J. G. Frye, A. H. Zacher, D. J. Miller, Battelle Memorial Institute,, ‘Hydrogenolysis of 6-Carbon Sugars and other Organic Compounds’, US Patent Appl. 2005/6,841,085 [Google Scholar]
  173. M. S. S. R. Tanikella, Du Pont,, ‘Hydrogenolysis of Polyols to Ethylene Glycol in Nonaqueous Solvents’, US Patent Appl. 1983/4,404,411 [Google Scholar]
  174. R. D. Cortright, R. R. Davda, J. A. Dumesic, Nature, 2002, 418, (6901), 964 LINK https://doi.org/10.1038/nature01009 [Google Scholar]
  175. G. W. Huber, R. D. Cortright, J. A. Dumesic, Angew. Chem. Int. Ed., 2004, 43, (12), 1549 LINK https://doi.org/10.1002/anie.200353050 [Google Scholar]
  176. Y. Li, P. Sponholz, M. Nielsen, H. Junge, M. Beller, ChemSusChem, 2015, 8, (5), 804 LINK https://doi.org/10.1002/cssc.201403099 [Google Scholar]
  177. G. W. Huber, J. N. Chheda, C. J. Barrett, J. A. Dumesic, Science, 2005, 308, (5727), 1446 LINK https://doi.org/10.1126/science.1111166 [Google Scholar]
  178. Y. Nakagawa, S. Liu, M. Tamura, K. Tomishige, ChemSusChem, 2015, 8, (7), 1114 LINK https://doi.org/10.1002/cssc.201403330 [Google Scholar]
  179. J. Song, H. Fan, J. Ma, B. Han, Green Chem., 2013, 15, (10), 2619 LINK https://doi.org/10.1039/C3GC41141A [Google Scholar]
  180. M. Dusselier, P. V. Wouwe, A. Dewaele, E. Makshina, B. F. Sels, Energy Environ. Sci., 2013, 6, (5), 1415 LINK https://doi.org/10.1039/C3EE00069A [Google Scholar]
  181. A. Szabolcs, M. Molnár, G. Dibó, L. T. Mika, Green Chem., 2013, 15, (2), 439 LINK https://doi.org/10.1039/C2GC36682G [Google Scholar]
  182. B. Girisuta, L. P. B. M. Janssen, H. J. Heeres, Ind. Eng. Chem. Res., 2007, 46, (6), 1696 LINK https://doi.org/10.1021/ie061186z [Google Scholar]
  183. F. Jin, H. Enomoto, Energy Environ. Sci., 2011, 4, (2), 382 LINK https://doi.org/10.1039/C004268D [Google Scholar]
  184. L. Calvo, D. Vallejo, Ind. Eng. Chem. Res., 2002, 41, (25), 6503 LINK https://doi.org/10.1021/ie020441m [Google Scholar]
  185. Z. Tang, W. Deng, Y. Wang, E. Zhu, X. Wan, Q. Zhang, Y. Wang, ChemSusChem, 2014, 7, (6), 1557 LINK https://doi.org/10.1002/cssc.201400150 [Google Scholar]
  186. Y. Wang, W. Deng, B. Wang, Q. Zhang, X. Wan, Z. Tang, Y. Wang, C. Zhu, Z. Cao, G. Wang, H. Wan, Nat. Commun., 2013, 4, 2141 LINK https://doi.org/10.1038/ncomms3141 [Google Scholar]
  187. Z. Huo, Y. Fang, D. Ren, S. Zhang, G. Yao, X. Zeng, F. Jin, ACS Sustainable Chem. Eng., 2014, 2, (12), 2765 LINK https://doi.org/10.1021/sc500507b [Google Scholar]
  188. P. Mäki-Arvela, I. L. Simakova, T. Salmi, D. Y. Murzin, Chem. Rev., 2014, 114, (3), 1909 LINK https://doi.org/10.1021/cr400203v [Google Scholar]
  189. F. Jin, Z. Zhou, T. Moriya, H. Kishida, H. Higashijima, H. Enomoto, Environ. Sci. Technol., 2005, 39, (6), 1893 LINK https://doi.org/10.1021/es048867a [Google Scholar]
  190. Y Han, J. Zhang, X Liu, King Abdullah University of Science and Technology,US Patent Appl., 2013/0,281,733 [Google Scholar]
  191. J. Hietala, A. Vuori, P. Johnsson, I. Pollari, W. Reutemann, H. Kieczka, ‘Formic Acid’, in “Ullmann’s Encyclopedia of Industrial Chemistry: 1–22”, Wiley-VCH Verlag GmbH & Co KGaA, Weinheim, Germany, 2016 LINK https://doi.org/10.1002/14356007.a12_013.pub3 [Google Scholar]
  192. J. H. Barnard, C. Wang, N. G. Berry, J. Xiao, Chem. Sci., 2013, 4, (3), 1234 LINK https://doi.org/10.1039/C2SC21923A [Google Scholar]
  193. F. Jin, J. Yun, G. Li, A. Kishita, K. Tohji, H. Enomoto, Green Chem., 2008, 10, (6), 612 LINK https://doi.org/10.1039/B802076K [Google Scholar]
  194. R. Wölfel, N. Taccardi, A. Bösmann, P. Wasserscheid, Green Chem., 2011, 13, (10), 2759 LINK https://doi.org/10.1039/C1GC15434F [Google Scholar]
  195. T. Pan, J. Deng, Q. Xu, Y. Zuo, Q.-X. Guo, Y. Fu, ChemSusChem, 2013, 6, (1), 47 LINK https://doi.org/10.1002/cssc.201200652 [Google Scholar]
  196. A. Gandini, D. Coelho, M. Gomes, B. Reis, A. J. Silvestre, Mater. Chem., 2009, 19, (45), 8656 LINK https://doi.org/10.1039/B909377J [Google Scholar]
  197. J. M. R. Gallo, D. M. Alonso, M. A. Mellmer, J. A. Dumesic, Green Chem., 2013, 15, (1), 85 LINK https://doi.org/10.1039/C2GC36536G [Google Scholar]
  198. S. P. Teong, G. Yi, Y. Zhang, Green Chem., 2014, 16, (4), 2015 LINK https://doi.org/10.1039/C3GC42018C [Google Scholar]
  199. J. Cai, H. Ma, J. Zhang, Q. Song, Z. Du, Y. Huang, J. Xu, Chem. Eur. J., 2013, 19, (42), 14215 LINK https://doi.org/10.1002/chem.201301735 [Google Scholar]
  200. A. Jain, S. C. Jonnalagadda, K. V. Ramanujachary, A. Mugweru, Catal. Commun., 2015, 58, 179 LINK https://doi.org/10.1016/j.catcom.2014.09.017 [Google Scholar]
  201. W. Partenheimer, V. V. Grushin, Adv. Synth. Catal., 2001, 343, (1), 102 LINK https://doi.org/10.1002/1615-4169(20010129)343:1<102::AID-ADSC102>3.0.CO;2-Q [Google Scholar]
  202. G. Yi, S. P. Teong, Y. Zhang, ChemSusChem, 2015, 8, (7), 1151 LINK https://doi.org/10.1002/cssc.201500118 [Google Scholar]
  203. Z. Yang, W. Qi, R. Su, Z. He, Energy Fuels, 2017, 31, (1), 533 LINK https://doi.org/10.1021/acs.energyfuels.6b02012 [Google Scholar]
  204. H. A. Rass, N. Essayem, M. Besson, ChemSusChem, 2015, 8, (7), 1206 LINK https://doi.org/10.1002/cssc.201403390 [Google Scholar]
  205. F. Koopman, N. Wierckx, J. H. de Winde, H. J. Ruijssenaars, Bioresource Technol., 2010, 101, (16), 6291 LINK https://doi.org/10.1016/j.biortech.2010.03.050 [Google Scholar]
  206. ‘YXY Technology’, Avantium, Amsterdam, The Netherlands:https://www.avantium.com/yxy/yxy-technology/ (Accessed on 18 August 2017) [Google Scholar]
  207. S. Ramachandran, P. Fontanille, A. Pandey, C. Larroche, Food Technol. Biotechnol., 2006, 44, (2), 185 LINK http://www.ftb.com.hr/images/pdfarticles/2006/April-June/44-185.pdf [Google Scholar]
  208. M. J. Climent, A. Corma, S. Iborra, Green Chem., 2011, 13, (3), 52 LINK https://doi.org/10.1039/C0GC00639D [Google Scholar]
  209. S. Biella, L. Prati, M. Rossi, J. Catal., 2002, 206, (2), 242 LINK https://doi.org/10.1006/jcat.2001.3497 [Google Scholar]
  210. Y. Önal, S. Schimpf, P. Claus, J. Catal., 2004, 223, (1), 122 LINK https://doi.org/10.1016/j.jcat.2004.01.010 [Google Scholar]
  211. C. Baatz, U. Prüße, J. Catal., 2007, 249, (1), 34 LINK https://doi.org/10.1016/j.jcat.2007.03.026 [Google Scholar]
  212. A. Mirescu, H. Brendt, A. Martin, U. Prüße, Appl. Catal. A: Chem., 2007, 317, (2), 204 LINK https://doi.org/10.1016/j.apcata.2006.10.016 [Google Scholar]
  213. M. Comotti, C. D. Pina, M. Rossi, J. Mol. Catal. A: Chem., 2006, 251, (1–2), 89 LINK https://doi.org/10.1016/j.molcata.2006.02.014 [Google Scholar]
  214. D. An, A. Ye, W. Deng, Q. Zhang, Y. Wang, Chem Eur. J., 2012, 18, (10), 2938 LINK https://doi.org/10.1002/chem.201103262 [Google Scholar]
  215. A. Onda, T. Ochi, K. Yanagisawa, Catal. Commun., 2011, 12, (6), 421 LINK https://doi.org/10.1016/j.catcom.2010.10.023 [Google Scholar]
  216. V. J. Murphy, J. Shoemaker, G. Zhu, R. Archer, G. F. Salema, E. L. Dias, Rennovia Inc,, US Patent Appl. 2011/0,306,790 [Google Scholar]
  217. T. R. Boussie, E. L. Dias, Z. M. Fresco, V. J. Murphy, J. Shoemaker, R. Archer, H. Jiang, Rennovia Inc,, US Patent Appl. 2010/0,317,823 [Google Scholar]
  218. G. M. Diamond, V. Murphy, T. R. Boussie, ‘Application of High Throughput Experimentation to the Production of Commodity Chemicals from Renewable Feedstocks’, in “Modern Applications of High Throughput R&D in Heterogeneous Catalysis”, eds. A. Hagemeyer, A. F Volpe, Bentham Science Publishers, United Arab Emirates, 2014, pp. 288309 LINK https://doi.org/10.2174/97816080587231140101 [Google Scholar]
  219. J. R. Dodson, A. J. Hunt, H. L. Parker, Y. Yang, J. H. Clark, Chem. Eng. Proc.: Proc. Intens., 2012, 51, 69 LINK https://doi.org/10.1016/j.cep.2011.09.008 [Google Scholar]
  220. V. Wilson-Corral, C. W. N. Anderson, M. Rodriguez-Lopez, J. Environ. Manage., 2012, 111, 249 LINK https://doi.org/10.1016/j.jenvman.2012.07.037 [Google Scholar]
/content/journals/10.1595/205651317X696261
Loading
/content/journals/10.1595/205651317X696261
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test