Skip to content
1887
Volume 61, Issue 4
  • ISSN: 2056-5135

Abstract

Driven by concerns on deteriorating ambient air quality, measures are being taken across the world to adopt and enforce tighter vehicular emission regulations to minimise tailpipe unburned hydrocarbons, nitrogen oxides (NOx) and particulate matter (PM). In regions with advanced regulations, the focus is on limiting the pollutants under real-world or in-use driving conditions. Given the intensified effort to curb global warming and limit fossil fuel use in the transportation sector, several countries have adopted targets on tailpipe carbon dioxide emissions. This confluence of stringent regulations for both criteria pollutant and greenhouse gas (GHG) emissions is leading to a rapid adoption of advanced powertrains and aftertreatment technologies. This is a review of some of these recent advances pertinent to reducing vehicular emissions and developing improved aftertreatment solutions. The scope is limited to gasoline vehicles where the adoption of gasoline direct injection (GDI) and hybrid powertrain technologies is leading to significant shifts in the aftertreatment solutions. There is significant work being done to improve diesel aftertreatment systems especially in light of real-world driving emission (RDE) regulations. These are not covered here, rather the reader is referred to a previous article in this journal’s archive (1), and to a more recent review (2).

Loading

Article metrics loading...

/content/journals/10.1595/205651317X696306
2017-01-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/61/4/Corning_16a_Imp.html?itemId=/content/journals/10.1595/205651317X696306&mimeType=html&fmt=ahah

References

  1. Johnson T. Platinum Metals Rev., 2008, 52, (1), 23 LINK http://www.technology.matthey.com/article/52/1/23-37/ [Google Scholar]
  2. Johnson T., and Joshi A. ‘Review of Vehicle Engine Efficiency and Emissions’, SAE Technical Paper 2017-01-0907 LINK https://doi.org/10.4271/2017-01-0907 [Google Scholar]
  3. Commission Regulation (EU) 2017/1151, Official J. Eur. Union, 2017, 60, (L175), 1 LINK http://data.europa.eu/eli/reg/2017/1151/oj [Google Scholar]
  4. Commission Regulation (EU) 2017/1154, Official J. Eur. Union, 2017, 60, (L175), 708 LINK http://data.europa.eu/eli/reg/2017/1154/oj [Google Scholar]
  5. Yamada H., Inomata S., and Tanimoto H. Emiss. Control Sci. Technol., 2017, 3, (2), 135 LINK https://doi.org/10.1007/s40825-016-0060-0 [Google Scholar]
  6. Christie M., and Ward A. ‘Aftertreatment and Emissions Control for Improved GHG and Air Quality’, ERC 2017 Symposium: Impact of Future Regulations on Engine Technology, Madison, USA, 14th–15th June, 2015 LINK http://www.erc.wisc.edu/documents/symp17/2107_Ricardo_Christie.pdf [Google Scholar]
  7. He H., and Yang L. ‘China’s Stage 6 Emission Standard for New Light-Duty Vehicles (Final Rule)’, The International Council on Clean Transportation (ICCT), Washington, USA, 16th March, 2017 LINK http://www.theicct.org/china-stage-6-emission-standard-new-LDVs-final-rule [Google Scholar]
  8. ‘Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards: Final Rule’, EPA-HQ-OAR-2011-0135, Part II, Federal Register, Environmental Protection Agency, Washington, USA, 28th April, 2014, Vol. 79, Issue 81, p. 23414 LINK http://www.gpo.gov/fdsys/pkg/FR-2014-04-28/pdf/2014-06954.pdf [Google Scholar]
  9. Gearhart C. MRS Energy & Sustain., 2016, 3, E8 LINK https://doi.org/10.1557/mre.2016.8 [Google Scholar]
  10. Office of Transportation and Air Quality, US Environmental Protection Agency, National Highway Traffic Safety Administration, US Department of Transportation and California Air Resources Board, ‘Draft Technical Assessment Report: Midterm Evaluation of Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards for Model Years 2022-2025’, EPA-420-D-16-900, Environmental Protection Agency, Washington, USA, July, 2016
  11. Lutsey N., Meszler D., Isenstadt A., German J., and Miller J. ‘Efficiency Technology and Cost Assessment for US 2025–2030 Light-Duty Vehicles’, International Council on Clean Transportation (ICCT), Washington, USA, White Paper, 22nd March, 2017 LINK http://www.theicct.org/US-2030-technology-cost-assessment [Google Scholar]
  12. Schenk C., and Dekraker P. ‘Potential Fuel Economy Improvements from the Implementation of cEGR and CDA on an Atkinson Cycle Engine’, SAE Technical Paper 2017-01-1016, SAE International, Warrendale, USA, 28th March, 2017 LINK https://doi.org/10.4271/2017-01-1016 [Google Scholar]
  13. Fujimoto Y. ‘Introduction of Variable Compression Turbo Engine’, Advanced Clean Cars Symposium: The Road Ahead, California Air Resources Board, Sacramento, USA, 27th–28th September, 2016 LINK https://www.arb.ca.gov/msprog/consumer_info/advanced_clean_cars/vct_engine_technology_yutaka_fujimoto.pdf [Google Scholar]
  14. Alger T. ‘New Developments in Dedicated EGR Engines’, 16th Hyundai Kia International Powertrain Conference, Namyang, Korea, 25th–26th October, 2016 [Google Scholar]
  15. Kim J., Park H., Bae C., Choi M., and Kwak Y. Int. J. Engine Res., 2016, 17, (7), 795 LINK https://doi.org/10.1177/1468087415613221 [Google Scholar]
  16. Hoppe F., Thewes M., Baumgarten H., and Dohmen J. Int. J. Engine Res., 2016, 17, (1) 86 LINK https://doi.org/10.1177/1468087415599867 [Google Scholar]
  17. Dempsey A. B., Curran S. J., and Wagner R. M. Int. J. Engine Res., 2016, 17, (8), 897 LINK https://doi.org/10.1177/1468087415621805 [Google Scholar]
  18. Sellnau M. C. ‘Aftertreatment for Low-Temperature Combustion and US Tier3-Bin 30 Emissions’, SAE 2017 Light Duty Emissions Control Symposium, Washington DC, USA, 23rd–24th January, 2017 [Google Scholar]
  19. ‘Mazda Announces Long-Term Vision for Technology Development: Sustainable Zoom-Zoom 2030’, Mazda, Hiroshima, Japan, 8th August, 2017 LINK http://www2.mazda.com/en/publicity/release/2017/201708/170808a.html [Google Scholar]
  20. Okita R. ‘Mazda SKYACTIV-G Engine with New Boosting Technology’, Advanced Clean Cars Symposium: The Road Ahead, Air Resources Board, Sacramento, USA, 27th–28th September, 2016 LINK https://www.arb.ca.gov/msprog/consumer_info/advanced_clean_cars/new_engine_technology_reiji_okita.pdf [Google Scholar]
  21. Mamikoglu S., Andric J., and Dahlander P. ‘Impact of Conventional and Electrified Powertrains on Fuel Economy in Various Driving Cycles’, SAE Technical Paper 2017-01-0903 LINK https://doi.org/10.4271/2017-01-0903 [Google Scholar]
  22. Drozd G. T., Zhao Y., Saliba G., Frodin B., Maddox C., Weber R. J., Chang M.-C. O., Maldonado H., Sardar S., Robinson A. L., and Goldstein A. H. Environ. Sci. Technol., 2016, 50, (24), 13592 LINK https://doi.org/10.1021/acs.est.6b04513 [Google Scholar]
  23. Watling T., and Cox J. SAE Int. J. Engines, 2014, 7, (3), 1311 LINK https://doi.org/10.4271/2014-01-1564 [Google Scholar]
  24. Ball D., and Moser D. ‘Impact of LEV-III and Tier-III Emission Regulations’, SAE 2017 Light Duty Emissions Control Symposium, Washington DC, USA, 23rd–24th January, 2017 [Google Scholar]
  25. Theis J., Getsoian A., and Lambert C. SAE Int. J. Fuels Lubr., 2017, 10, (2), 583 LINK https://doi.org/10.4271/2017-01-0918 [Google Scholar]
  26. Lambert C. ‘Next Generation Three-Way Catalysts for Future, Highly Efficient Gasoline Engines”, 2017 Annual Merit Review and Peer Evaluation, US Department of Energy, Washington DC, USA, 5th–9th June, 2017 [Google Scholar]
  27. Schoenhaber J., Richter J. M., Despres J., Schmidt M., Spiess S., and Roesch M. ‘Advanced TWC Technology to Cover Future Emission Legislations’, SAE Technical Paper 2015-01-0999 LINK https://doi.org/10.4271/2015-01-0999 [Google Scholar]
  28. Hashimoto M., Nakanishi Y., Koyama H., Inose S., Takeori H., Watanabe T., Narishige T., Okayama T., and Suehiro Y. ‘Development of Low Temperature Active Material for Three Way Catalyst’, SAE Technical Paper 2016-01-0932 LINK https://doi.org/10.4271/2016-01-0932 [Google Scholar]
  29. Hanaki Y., Fujimoto M., and Itou J. ‘Alternative Technology for Platinum Group Metals in Automobile Exhaust Gas Catalysts’, SAE Technical Paper 2016-01-0930 LINK https://doi.org/10.4271/2016-01-0930 [Google Scholar]
  30. Golden S., Nazarpoor Z., and Liu R. ‘TWC Using Advanced Spinel Materials and Prospects for BSVI Compliance’, SAE Technical Paper 2017-26-0126 LINK https://doi.org/10.4271/2017-26-0126 [Google Scholar]
  31. Tanner C., Twiggs K., Tao T., Bronfenbrenner D., Matsuzono Y., Otsuka S., Suehiro Y., and Koyama H. ‘High Porosity Substrates for Fast-Light-Off Applications’, SAE Technical Paper 2015-01-1009 LINK https://doi.org/10.4271/2015-01-1009 [Google Scholar]
  32. Otsuka S., Suehiro Y., Koyama H., Matsuzono Y., Tanner C., Bronfenbrenner D., Tao T., and Twiggs K. ‘Development of a Super-Light Substrate for LEV III/Tier3 Emission Regulation’, SAE Technical Paper 2015-01-1001 LINK https://doi.org/10.4271/2015-01-1001 [Google Scholar]
  33. Yoshida T., Suzuki H., Aoki Y., Hayashi N., and Ito K. SAE Int. J. Engines, 2017, 10, (4) LINK https://doi.org/10.4271/2017-01-0919 [Google Scholar]
  34. Choi M. Y. ‘A New Catalyst Technology for Improving Fuel Economy’, 16th Hyundai Kia International Powertrain Conference, Namyang, Korea, 25th–26th October, 2016 [Google Scholar]
  35. Craig A., Warkins J., Aravelli K., Moser D., Yang L., Ball D., Tao T., and Ross D. SAE Int. J. Engines, 2016, 9, (2), 1276 LINK https://doi.org/10.4271/2016-01-0925 [Google Scholar]
  36. Chan T. W., Saffaripour M., Liu F., Hendren J., Thomson K. A., Kubsh J., Brezny R., and Rideout G. Emiss. Control Sci. Technol., 2016, 2, (2), 75 LINK https://doi.org/10.1007/s40825-016-0033-3 [Google Scholar]
  37. Zhou A. ‘Legislation Trend and GPF Development Trend in China’, 16th Hyundai Kia International Powertrain Conference, Namyang, Korea, 25th–26th October, 2016 [Google Scholar]
  38. Schoenhaber J., Kuehn N., Bradler B., Richter J. M., Bauer S., Lenzen B., and Beidl C. ‘Impact of European Real-Driving-Emissions Legislation on Exhaust Gas Aftertreatment Systems of Turbocharged Direct Injected Gasoline Vehicles’, SAE Technical Paper 2017-01-0924 LINK https://doi.org/10.4271/2017-01-0924 [Google Scholar]
  39. Khalek I. A., Bougher T., and Jetter J. J. SAE Int. J. Fuels Lubr., 2010, 3, (2), 623 LINK https://doi.org/10.4271/2010-01-2117 [Google Scholar]
  40. Maricq M. M., Szente J., Loos M., and Vogt R. SAE Int. J. Engines, 2011, 4, (1), 597 LINK https://doi.org/10.4271/2011-01-0623 [Google Scholar]
  41. Chan T. W., Meloche E., Kubsh J., and Brezny R. Environ. Sci. Technol., 2014, 48, (10), 6027 LINK https://doi.org/10.1021/es501791b [Google Scholar]
  42. Yinhui W., Rong Z., Yanhong Q., Jianfei P., Mengren L., Jianrong L., Yusheng W., Min H., and Shijin S. Fuel, 2016, 166, 543 LINK https://doi.org/10.1016/j.fuel.2015.11.019 [Google Scholar]
  43. Aikawa K., Sakurai T., and Jetter J. J. SAE Int. J. Fuels Lubr., 2010, 3, (2), 610 LINK https://doi.org/10.4271/2010-01-2115 [Google Scholar]
  44. Karavalakis G. ‘Fuel and After-Treatment Effects on Particulate and Toxic Emissions from GDI and PFI Vehicles: A Summary of CE-CERT’s Research’, Workshop on Effects of Fuel Composition on PM, Chicago, USA, 8th December, 2016 LINK https://www.healtheffects.org/sites/default/files/Karavalakis-Fuel_and_Aftertreatment_Effects.pdf [Google Scholar]
  45. Badshah H., Kittelson D., and Northrop W. SAE Int. J. Engines, 2016, 9, (3), 1775 LINK https://doi.org/10.4271/2016-01-0997 [Google Scholar]
  46. Joshi A., Bronfenbrenner D., Tanner C., Ogunwumi R., Rose D., Nicolin P., Coulet B., and Boger T. ‘High Porosity Substrate and Filter Technologies for Advanced Gasoline Applications’, 15th Hyundai Kia International Powertrain Conference, Seoul, Korea, 27th–28th October, 2015 [Google Scholar]
  47. Lambert C. K., Bumbaroska M., Dobson D., Hangas J., Pakko J., and Tennison P. SAE Int. J. Engines, 2016, 9, (2), 1296 LINK https://doi.org/10.4271/2016-01-0941 [Google Scholar]
  48. Lambert C. K., Chanko T., Jagner M., Hangas J., Liu X., Pakko J., and Kamp C. J. SAE Int. J. Engines, 2017, 10, (4), 1595 LINK https://doi.org/10.4271/2017-01-0930 [Google Scholar]
  49. Custer N., Kamp C. J., Sappok A., Pakko J., Lambert C., Boerensen C., and Wong V. SAE Int. J. Engines, 2016, 9, (3), 1604 LINK https://doi.org/10.4271/2016-01-0942 [Google Scholar]
  50. Boger T., Rose D., Nicolin P., Gunasekaran N., and Glasson T. Emiss. Control Sci. Technol., 2015, 1, (1), 49 LINK https://doi.org/10.1007/s40825-015-0011-1 [Google Scholar]
  51. Zimmerman N., Wang J. M., Jeong C.-H., Ramos M., Hilker N., Healy R. M., Sabaliauskas K., Wallace J. S., and Evans G. J. Environ. Sci. Technol., 2016, 50, (4), 2035 LINK https://doi.org/10.1021/acs.est.5b04444 [Google Scholar]
  52. Karavalakis G., Short D., Vu D., Yang J., and Durbin T. ‘Monoaromatic and Polycyclical Aromatic Emissions from GDI and PFI Vehicles on Ethanol and Iso-butanol Blends’, SAE 2016 International Powertrains, Fuels and Lubricants Meeting, Baltimore, USA, 24th–26th October, 2016 [Google Scholar]
  53. Muñoz Fernandez M., and Heeb N. ‘PAH and Nitro-PAH Emissions from GDI Vehicles’, 19th ETH-Conference on Combustion Generated Nanoparticles, Zürich, Switzerland, 28th June–1st July, 2015 [Google Scholar]
  54. ‘Transposition of GTR15 (WLTP) into UN Regulations: Update from WLTP Transposition Task Force’, Informal Document GRPE-75-18, 75th GRPE Session, Working Party on Pollution and Energy, UNECE, Geneva, Switzerland, 6th–9th June, 2017 LINK http://www.unece.org/fileadmin/DAM/trans/doc/2017/wp29grpe/GRPE-75-17.pdf [Google Scholar]
  55. Czerwinski J., Comte P., Heeb N., Mayer A., and Hensel V. ‘Nanoparticle Emissions of DI Gasoline Cars with/without GPF’, SAE Technical Paper 2017-01-1004 LINK https://doi.org/10.4271/2017-01-1004 [Google Scholar]
  56. Andersson J., Demuynck J., and Hamje H. “AECC/Concawe 2016 GPF RDE PN Test Programme: PN Measurement Above and Below 23nm”, 21st ETH-Conference on Combustion Generated Nanoparticles, Zürich, Switzerland, 19th–22nd June, 2017 LINK http://www.nanoparticles.ch/archive/2017_Andersson_PR.pdf [Google Scholar]
  57. Prikhodko V. Y., Parks J. E., Pihl J. A., and Toops T. J. SAE Int. J. Engines, 2016, 9, (2), 1289 LINK https://doi.org/10.4271/2016-01-0934 [Google Scholar]
  58. Li J., Currier N., Yezerets A., Chen H.-Y., Hess H., and Mulla S. SAE Int. J. Engines, 2016, 9, (3), 1615 LINK https://doi.org/10.4271/2016-01-0947 [Google Scholar]
  59. Parks J., Toops T., Pihl J., and Prikhodko V. ‘Emissions Control for Lean Gasoline Engines’, Vehicle Technologies Office Merit Review 2016: Emissions Control for Lean Gasoline Engines, Office of Energy Efficiency and Renewable Energy, US Department of Energy, Washington DC, USA, 9th June, 2016 LINK https://energy.gov/sites/prod/files/2016/06/f32/ace033_parks_2016_o_web.pdf [Google Scholar]
  60. Nakayama H., Kanno Y., Nagata M., and Zheng X. SAE Int. J. Engines, 2016, 9,(4), 2194 LINK https://doi.org/10.4271/2016-01-2323 [Google Scholar]
  61. Parks J. E., Storey J. M. E., Prikhodko V. Y., Debusk M. M., and Lewis S. A. ‘Filter-Based Control of Particulate Matter from a Lean Gasoline Direct Injection Engine’, SAE Technical Paper 2016-01-0937 LINK https://doi.org/10.4271/2016-01-0937 [Google Scholar]
  62. Duarte G. O., Varella R. A., Gonçalves G. A., and Farias T. L. J. Power Sources, 2014, 246, 377 LINK https://doi.org/10.1016/j.jpowsour.2013.07.103 [Google Scholar]
  63. Yamada H., Inomata S., and Tanimoto H. Emiss. Control Sci. Technol., 2017, 3, (2), 135 LINK https://doi.org/10.1007/s40825-016-0060-0 [Google Scholar]
  64. Zinola S., Raux S., and Leblanc M. ‘Persistent Particle Number Emissions Sources at the Tailpipe of Combustion Engines’, SAE Technical Paper 2016-01-2283 LINK https://doi.org/10.4271/2016-01-2283 [Google Scholar]
  65. Nicholas M., Tal G., and Turrentine T. ‘Advanced Plug-In Electric Vehicle Travel and Charging Behavior’, Advanced Clean Cars Symposium: The Road Ahead, California Environmental Protection Agency, Air Resources Board, Sacramento, USA, 27th–28th September, 2016 LINK https://www.arb.ca.gov/msprog/consumer_info/advanced_clean_cars/pev_data_from_uc_davis_household_study_first_year_michael_nicholas.pdf [Google Scholar]
  66. Favre C. ‘Real-Driving Emissions Test Programme Results from a Plug-In Hybrid Electric Vehicle (PHEV)’, 13th Integer Emissions Summit and AdBlue® Forum Europe 2017, Dresden, Germany, 27th–29th June, 2017 [Google Scholar]
  67. Platt S. M., El Haddad I., Pieber S. M., Zardini A. A., Suarez-Bertoa R., Clairotte M., Daellenbach K. R., Huang R.-J., Slowik J. G., Hellebust S., Temime-Roussel B., Marchand N., de Gouw J., Jimenez J. L., Hayes P. L., Robinson A. L., Baltensperger U., Astorga C., and Prévôt A. S. H. Sci. Rep., 2017, 7, 4926 LINK https://doi.org/10.1038/s41598-017-03714-9 [Google Scholar]
http://instance.metastore.ingenta.com/content/journals/10.1595/205651317X696306
Loading
/content/journals/10.1595/205651317X696306
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error