Skip to content
1887
Volume 62, Issue 4
  • ISSN: 2056-5135

Abstract

Industrial processes contribute significantly to global carbon dioxide emissions, with iron and steel manufacturing alone responsible for 6% of the total figure. The STEPWISE project, funded through the European Horizon 2020 (H2020) Low Carbon Energy (LCE) programme under grant agreement number 640769, is looking at reducing CO emissions in the iron and steel making industries. At the heart of this project is the ECN technology called sorption-enhanced water-gas shift (SEWGS), which is a solid sorption technology for CO capture from fuel gases such as blast furnace gas (BFG). This technology combines water-gas shift (WGS) in the WGS section with CO/H separation steps in the SEWGS section. Scaling up of the SEWGS technology for CO capture from BFG and demonstrating it in an industrially relevant environment are the key objectives of the STEPWISE project, which are achieved by international collaboration between the project partners towards design, construction and operation of a pilot plant at Swerea Mefos, Luleå, Sweden, next to the SSAB steel manufacturing site.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X15268923666410
2018-01-01
2024-06-30
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/62/4/STEPWISE_16a_Imp.html?itemId=/content/journals/10.1595/205651318X15268923666410&mimeType=html&fmt=ahah

References

  1. Birat J.-P. ‘CO2 Emissions’, in “Global Technology Roadmap for CCS in Industry: Steel Sectoral Report”, Global CCS Institute, Melbourne, Australia, 9thSeptember, 2010, pp. 510 LINK http://www.globalccsinstitute.com/publications/global-technology-roadmap-ccs-industry-steel-sectoral-report [Google Scholar]
  2. Magneschi G. ‘CCS: A Necessary Technology for Decarbonising the Steel Sector’, Global CCS Institute, MelbourneW, Australia, 29thJune, 2017 LINK https://www.globalccsinstitute.com/insights/authors/GuidoMagneschi/2017/06/29/ccs-necessary-technology-decarbonising-steel-sector?author=MTgyMTM%3D [Google Scholar]
  3. van Selow E. R., Cobden P. D., Verbraeken P. A., Hufton J.R., and van den Brink R. W. Ind. Eng.Chem. Res., 2009,48, (9), 4184 LINK https://doi.org/10.1021/ie801713a [Google Scholar]
  4. Boon J., Cobden P. D., van Dijk H. A. J., Hoogland C., van Selow E. R., and van Sint Annaland M. Chem.Eng. J., 2014,248, 406 LINK https://doi.org/10.1016/j.cej.2014.03.056 [Google Scholar]
  5. Boon J., Cobden P. D., van Dijk H. A. J., and van Sint Annaland M. Chem. Eng. Sci., 2015, 122, 219 LINK https://doi.org/10.1016/j.ces.2014.09.034 [Google Scholar]
  6. van Dijk H. A. J., Walspurger S., Cobden P. D., van den Brink R.W., and de Vos F. G. Int. J. Greenhouse Gas Control, 2011,5, (3), 505 LINK https://doi.org/10.1016/j.ijggc.2010.04.011 [Google Scholar]
  7. Gazzani M., Romano M. C., and Manzolini G. Int. J. Greenhouse Gas Control, 2015,41, 249 LINK https://doi.org/10.1016/j.ijggc.2015.07.012 [Google Scholar]
  8. Carbo M. C., Boon J., Jansen D., van Dijk H. A. J., Dijkstra J. W., van den Brink R. W., and Verkooijen A. H. M. Int. J. Greenhouse Gas Control, 2009, 3, (6), 712 LINK https://doi.org/10.1016/j.ijggc.2009.08.003 [Google Scholar]
  9. Lee K. B., Verdooren A., Caram H. S., and Sircar S. J. Colloid Interface Sci., 2007,308, (1), 30 LINK https://doi.org/10.1016/j.jcis.2006.11.011 [Google Scholar]
  10. Oliveira E. L. G., Grande C. A., and Rodrigues A. E. Sep. Purif. Technol., 2008,62, (1), 137 LINK https://doi.org/10.1016/j.seppur.2008.01.011 [Google Scholar]
/content/journals/10.1595/205651318X15268923666410
Loading
/content/journals/10.1595/205651318X15268923666410
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error