Skip to content
Volume 63, Issue 1
  • ISSN: 2056-5135


This study was a small part of the EURARE project concerned with the processing of eudialyte concentrates from Greenland and Norra Kärr, Sweden. Eudialyte is a potential rare earth elements (REE) primary resource due to its good solubility in acid, low radioactivity and relatively high REE content. The main challenge is avoiding the formation of silica gel, which is non-filterable when using acid to extract REE. Some methods have been studied to address this issue and, based on previous research, this paper examined a complete hydrometallurgical treatment of eudialyte concentrate to the production of REE carbonate as a preliminary product. Dry digestion with concentrated hydrochloric acid (10 M) and subsequent water leaching of the treated eudialyte concentrate resulted in high REE extraction while avoiding gel formation. Experiments were performed at a small scale to obtain the optimal parameters. After the first two stages, 88.8% REE was leached under the optimal conditions (HCl:concentrate ratio 1.25:1, digestion time 40 min, water:concentrate ratio 2:1, leaching temperature 20–25°C and leaching time 30 min). After obtaining the pregnant leach solution, preliminary removal of impurities by a precipitation method was examined as well. When adjusting the pH to ~4.0 using calcium carbonate, zirconium, aluminium and iron were removed at 99.1%, 90.0% and 53.1%, respectively, with a REE loss of 2.1%. Finally, a pilot plant test was performed to demonstrate the feasibility and recovery performance under optimal parameters. The material balance in the upscaling test was also calculated to offer some references for future industrial application. A REE carbonate containing 30.0% total REE was finally produced, with an overall REE recovery yield of 85.5%.


Article metrics loading...

Loading full text...

Full text loading...



  1. Maestro P., and Huguenin D. J. Alloys Compd., 1995, 225, (1–2), 520 LINK [Google Scholar]
  2. Krishnamurthy N., and Gupta C. K. ‘The Rare Earths’, in “Extractive Metallurgy of Rare Earths”, 2nd Edn., Ch. 1, Taylor and Francis Group LLC, Boca Raton, USA, 2016, pp. 1–84 LINK [Google Scholar]
  3. Hoshino M., Sanematsu K., Watanabe Y., and Pecharsky V. K. ‘REE Mineralogy and Resources’, in “Handbook on the Physics and Chemistry of Rare Earths”, eds. Bünzli J.-C., 49, Elsevier BV, Oxford, UK, 2016, pp. 129–291 LINK [Google Scholar]
  4. Wang L., and Liang T. Sci. Rep., 2015, 5, 12483 LINK [Google Scholar]
  5. Feng Z., Huang X., Wang M., and Zhang G. Chinese J. Rare Metals, 2017, 41, (5), 604 LINK [Google Scholar]
  6. Spear F. S., and Pyle J. M. Rev. Mineral. Geochem., 2002, 48, (1), 293 LINK [Google Scholar]
  7. Huang X., Li H., Wang C., Wang G., Xue X., and Zhang G. Chinese J. Rare Metals, 2007, 31, (3), 279 LINK [Google Scholar]
  8. Su Z. World Nonferr. Metals, 2014, (8), 31 (In Chinese) LINK [Google Scholar]
  9. García M. V. R., Krzemień A., del Campo M. Á. M., Álvarez M. M., and Gent M. R. Resour. Policy, 2017, 53, 66 LINK [Google Scholar]
  10. Balomenos E., Davris P., Deady E., Yang J., Panias D., Friedrich B., Binnemans K., Seisenbaeva G., Dittrich C., Kalvig P., and Paspaliaris I. Johnson Matthey Technol. Rev., 2017, 61, (2), 142 LINK [Google Scholar]
  11. Goodenough K. M., Schilling J., Jonsson E., Kalvig P., Charles N., Tuduri J., Deady E. A., Sadeghi M., Schiellerup H., Müller A., Bertrand G., Arvanitidis N., Eliopoulos D. G., Shaw R. A., Thrane K., and Keulen N. Ore Geol. Rev., 2016, 72, (1), 838 LINK [Google Scholar]
  12. Borst A. M., Friis H., Andersen T., Nielsen T. F. D., Waight T. E., and Smit M. A. Mineral. Mag., 2016, 80, (1), 5 LINK [Google Scholar]
  13. Chakhmouradian A. R., and Zaitsev A. N. Elements, 2012, 8, (5), 347 LINK [Google Scholar]
  14. Johnsen O., Ferraris G., Gault R. A., Grice J. D., Kampf A. R., and Pekov I. V. Can. Mineral., 2003, 41, (3), 785 LINK [Google Scholar]
  15. Schilling J., Wu F.-Y., McCammon C., Wenzel T., Marks M. A. W., Pfaff K., Jacob D. E., and Markl G. Mineral. Mag., 2011, 75, (1), 87 LINK [Google Scholar]
  16. Rastsvetaeva R. K. Crystallogr. Rep., 2007, 52, (1), 47 LINK [Google Scholar]
  17. Marks M. A. W., and Markl G. Earth-Sci. Rev., 2017, 173, 229 LINK [Google Scholar]
  18. Pfaff K., Krumrei T., Marks M., Wenzel T., Rudolf T., and Markl G. Lithos, 2008, 106, (3–4), 280 LINK [Google Scholar]
  19. ‘Eudialyte’, The Hudson Institute of Mineralogy Keswick, Virginia, USA: (Accessed 25th September 2018)
  20. Stark T., Silin I., and Wotruba H. J. Sustain. Metall., 2017, 3, (1), 32 LINK [Google Scholar]
  21. Mitchell R. H., and Chakrabarty A. Lithos, 2012, 152, 218 LINK [Google Scholar]
  22. Sadeghi M., Morris G. A., Carranza E. J. M., Ladenberger A., and Andersson M. J. Geochem. Explor., 2013, 133, 160 LINK [Google Scholar]
  23. Marks M. A. W., Markl G., Namur O., Latypov R., and Tegner C. ‘The Ilímaussaq Alkaline Complex, South Greenland’, in “Layered Intrusions”, eds. Charlier B., Springer Science and Business Media, Dordrecht, The Netherlands, 2015, pp. 649–691 LINK [Google Scholar]
  24. Sjöqvist A. S. L., Cornell D. H., Andersen T., Erambert M., Ek M., and Leijd M. Minerals, 2013, 3, (1), 94 LINK [Google Scholar]
  25. Borst A., Waight T., Smit M., Friis H., and Nielsen T. ‘Alteration of Eudialyte and Implications for the REE, Zr and Nb Resources of the Layered Kakortokites in the Ilímaussaq Intrusion, South West Greenland’,1st European Rare Earth Resources Conference, 2014, Milos, Greece, 4th–7th September, 2014, pp. 325–332 LINK [Google Scholar]
  26. Zakharov V. I., Maiorov D. V., Alishkin A. R., and Matveev V. A. Russ. J. Non-Ferr. Metals, 2011, 52, (5), 423 LINK [Google Scholar]
  27. Lebedev V. N. Russ. J. Appl. Chem., 2003, 76, (10), 1559 LINK [Google Scholar]
  28. Lebedev V. N., Shchur T. E., Maiorov D. V., Popova L. A., and Serkova R. P. Russ. J. Appl. Chem., 2003, 76, (8), 1191 LINK [Google Scholar]
  29. Voßenkaul D., Birich A., Müller N., Stoltz N., and Friedrich B. J. Sustain. Metall., 2017, 3, (1), 79 LINK [Google Scholar]
  30. Dibrov I. A., Chirkst D. E., and Litvinova T. E. Russ. J. Appl. Chem., 2002, 75, (2), 195 LINK [Google Scholar]
  31. Davris P., Stopic S., Balomenos E., Panias D., Paspaliaris I., and Friedrich B. Miner. Eng., 2017, 108, 115 LINK [Google Scholar]
  32. Ma Y., Stopic S., Gronen L., Milivojevic M., Obradovic S., and Friedrich B. Metals, 2018, 8, (4), 267 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error