Skip to content
Volume 63, Issue 2
  • ISSN: 2056-5135


Chlorination is necessary to prevent epidemics of waterborne disease however excess chlorination is wasteful, produces harmful disinfection byproducts, exacerbates corrosion and causes deterioration in aesthetic qualities, leading to consumer complaints. Residual chlorine must be continuously monitored to prevent both under- and over-chlorination and factors including pH, temperature and fouling must be considered as these also affect the disinfectant strength of residual chlorine. Standard methods used by water utility companies to determine residual chlorine concentration in drinking water distribution systems are appraised and found to be unsuitable for continuous monitoring. A selection of newly developed methods for residual chlorine analysis are evaluated against performance criteria, to direct research towards the development of chlorine sensors that are suitable for use in water systems. It is found that fouling tolerance in particular is generally not well understood for these selected sensor technologies and that long-term trials in real systems is recommended.


Article metrics loading...

Loading full text...

Full text loading...



  1. ‘Health Risks from Microbial Growth and Biofilms in Drinking Water Distribution Systems’, Office of Ground Water and Drinking Water, US EPA, Washington, DC, USA, White Paper, 17th June, 2002, 50 pp LINK [Google Scholar]
  2. Shannon M. A., Bohn P. W., Elimelech M., Georgiadis J. G., Mariñas B. J., and Mayes A. M. Nature, 2008, 452, (7185), 301 LINK [Google Scholar]
  3. Robens Institute, University of Surrey, UK, ‘Disinfectants’, Fact Sheet 2.16, ‘Water Sanitation Hygiene: Fact Sheets on Environmental Sanitation’, World Health Organization, Geneva, Switzerland, 1996, pp 111–115 LINK [Google Scholar]
  4. US Code of Federal Regulation (CFR), Title 40, ‘Protection of Environment: Analytical and Monitoring Requirements’, Parts 141.74, US Government Printing Office, Washington, DC, USA, 1st July, 2011 LINK [Google Scholar]
  5. Camper A. K., and McFeters G. A. Appl. Environ. Microbiol., 1979, 37, (3), 633 LINK [Google Scholar]
  6. Venkobachar C., Iyengar L., and Prabhakara Rao A. V. S. Water Res., 1977, 11, (8), 727 LINK [Google Scholar]
  7. Richardson S. D. TrAC Trends Anal. Chem., 2003, 22, (10), 666 LINK [Google Scholar]
  8. Krasner S. W., Weinberg H. S., Richardson S. D., Pastor S. J., Chinn R., Sclimenti M. J., Onstad G. D., and Thruston A. D. Environ. Sci. Technol., 2006, 40, (23), 7175 LINK [Google Scholar]
  9. Richardson S. D., ‘Disinfection By-Products: Formation and Occurrence in Drinking Water’, in “Encyclopedia of Environmental Health”, ed. and Nriagu J. O. Elsevier BV, Amsterdam, The Netherlands, 2011, pp. 110–136 LINK [Google Scholar]
  10. Zeng Q., Wang Y.-X., Xie S.-H., Xu L., Chen Y.-Z., Li M., Yue J., Li Y.-F., Liu A.-L., and Lu W.-Q. Environ. Health Perspect., 2014, 122, (7), 741 LINK [Google Scholar]
  11. Lv L., Jiang T., Zhang S., and Yu X. Environ. Sci. Technol., 2014, 48, (14), 8188 LINK [Google Scholar]
  12. “Report of the International Conference on Primary Health Care”, Alma-Ata, USSR, 6th–12th September, 1978, World Health Organization, Geneva, Switzerland, 1978, 77 pp LINK [Google Scholar]
  13. Burn J. L. Lancet, 1951, 258, (6686), 739 LINK [Google Scholar]
  14. “Guidelines for Drinking-water Quality”, 4th Edn.,World Health Organization, Geneva, Switzerland, 2011, 564 pp. LINK [Google Scholar]
  15. Graham N. Urban Water, 1999, 1, (2), 183 LINK [Google Scholar]
  16. Boulay N., and Edwards M. Water Res., 2001, 35, (3), 683 LINK [Google Scholar]
  17. Frateur I., Deslouis C., Kiene L., Levi Y., and Tribollet B. Water Res., 1999, 33, (8), 1781 LINK [Google Scholar]
  18. Hua F., West J. R., Barker R. A., and Forster C. F. Water Res., 1999, 33, (12), 2735 LINK [Google Scholar]
  19. ‘Installation of 6189 Copper Anti-Fouling Tape for YSI Water Quality Probes’, Instruction Sheet 616053, YSI Incorporated, Yellow Springs, USA, 5 pp LINK [Google Scholar]
  20. Qin Y., Kwon H.-J., Howlader M. M. R., and Deen M. J. RSC Adv., 2015, 5, (85), 69086 LINK [Google Scholar]
  21. Pizzi N. G., and Lauer W. C. “Water Treatment Operator Training Handbook”, 3rd Edn.,American Water Works Association, Denver, USA, 2013, 294 pp [Google Scholar]
  22. Kirmeyer G., Martel K., Thompson G., Radder L., Klement W., LeChevallier M., Baribeau H., and Flores A. “Optimizing Chloramine Treatment”, 2nd Edn.,Awwa Research Foundation, Denver, USA, 2004 [Google Scholar]
  23. Griffin A. E., and Chamberlin N. S. Am. J. Public Health, 1941, 31, (8), 803 LINK [Google Scholar]
  24. “Handbook of Chemistry and Physics”, ed. Lide D. R. 85th Edn.,CRC Press LLC, Boca Raton, USA, 2004 [Google Scholar]
  25. “CRC Handbook of Chemistry and Physics”, 87th Edn., ed. Lide D. D. Taylor and Francis Group LLC, Boca Raton, USA, 2005 [Google Scholar]
  26. Pletcher D. J. Appl. Electrochem., 2010, 40, (7), 1441 LINK [Google Scholar]
  27. Morris J. C. J. Am. Waterworks Assoc., 1966, 58, (11), 1475 LINK [Google Scholar]
  28. Marks H. C., and Strandskov F. B. Ann. N. Y. Acad. Sci., 1950, 53, (1), 163 LINK [Google Scholar]
  29. Butterfield C. T., Wattie E., Megregian S., and Chambers C. W. Public Health Rep., 1943, 58, (51), 1837 LINK [Google Scholar]
  30. ‘Hypochlorous Acid’, National Institute of Standards and Technology, US Department of Commerce, Gaithersburg, USA: (Accessed on 7th November 2018) [Google Scholar]
  31. Farkas A., Dragan-Bularda M., Muntean V., Ciataras D., and Tigan S. Cent. Eur. J. Biol., 2012, 8, (2), 201 LINK [Google Scholar]
  32. Tamachkiarow A., and Flemming H.-C. Water Sci. Technol., 2003, 47, (5), 19 LINK [Google Scholar]
  33. Chowdhury S. Environ. Monit. Assess., 2012, 184, (10), 6087 LINK [Google Scholar]
  34. Aisopou A., Stoianov I., and Graham N. J. D. Water Res., 2012, 46, (1), 235 LINK [Google Scholar]
  35. Stocks-Fischer S., Galinat J. K., and Bang S. S. Soil Biol. Biochem., 1999, 31, (11), 1563 LINK [Google Scholar]
  36. Sawicki J. A., and Brown D. A. Hyperfine Interact., 1998, 117, (1–4), 371 LINK [Google Scholar]
  37. Ridgway H. F., and Olson B. H. Appl. Environ. Microbiol., 1982, 44, (4), 972 LINK [Google Scholar]
  38. ‘Chemical Disinfecting Agents in Waters and Effluents – Methods for the Examination of Waters and Associated Materials’, Environment Agency, Bristol, UK, 2008, 70 pp LINK [Google Scholar]
  39. Clesceri L. S., and Eaton A. D. “Standard Methods for the Examination of Water and Wastewater”, eds. Greenberg A. E., 18th Edn.,American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, USA, 1992 [Google Scholar]
  40. ‘AW400: Residual Chlorine Monitor’, Data Sheet DS/AW400-EN Rev. D, ABB, Stonehouse, UK, 2010 [Google Scholar]
  41. Pinkernell U., Nowack B., Gallard H., and von Gunten U. Water Res., 2000, 34, (18), 4343 LINK [Google Scholar]
  42. Gopu C. L., Krishna A. S., and Sreenivasan K. Sensors Actuators B: Chem., 2015, 209, 798 LINK [Google Scholar]
  43. Szili M., Kasik I., Matejec V., Nagy G., and Kovacs B. Sensors Actuators B: Chem., 2014, 192, 92 LINK [Google Scholar]
  44. Olivé-Monllau R., Orozco J., Fernández-Sánchez C., Baeza M., Bartrolí J., Jimenez-Jorquera C., and Céspedes F. Talanta, 2009, 77, (5), 1739 LINK [Google Scholar]
  45. Yan Y., Wang S., Liu Z., Wang H., and Huang D. Anal. Chem., 2010, 82, (23), 9775 LINK [Google Scholar]
  46. Xue M., Zhang L., Zou M., Lan C., Zhan Z., and Zhao S. Sensors Actuators B: Chem., 2015, 219, 50 LINK [Google Scholar]
  47. Yu H., and Zheng L. Microchim. Acta, 2016, 183, (7), 2229 LINK [Google Scholar]
  48. Muñoz J., Céspedes F., and Baeza M. Microchem. J., 2015, 122, 189 LINK [Google Scholar]
  49. Salazar P., Martín M., García-García F. J., González-Mora J. L., and González-Elipe A. R. Sensors Actuators B: Chem., 2015, 213, 116 LINK [Google Scholar]
  50. Lou X., Zhang Y., Qin J., and Li Z. Sensors Actuators B: Chem., 2012, 161, (1), 229 LINK [Google Scholar]
  51. Sun M., Yu H., Zhu H., Ma F., Zhang S., Huang D., and Wang S. Anal. Chem., 2014, 86, (1), 671 LINK [Google Scholar]
  52. Murata M., Ivandini T. A., Shibata M., Nomura S., Fujishima A., and Einaga Y. J. Electroanal. Chem., 2008, 612, (1), 29 LINK [Google Scholar]
  53. Moberg L., and Karlberg B. Anal. Chim. Acta, 2000, 407, (1–2), 127 LINK [Google Scholar]
  54. Palin A. T. J. Am. Water Works Assoc., 1957, 49, (7), 873 LINK [Google Scholar]
  55. Bender D. F. “Comparison of Methods for the Determination of Total Available Residual Chlorine in Various Sample Matrices”, EPA600/4-78-019, Environmental Monitoring and Support Laboratory, Environmental Protection Agency, Cincinnati, USA, April, 1978, 44 pp LINK [Google Scholar]
  56. Xiong Y., Tan J., Wang C., Wu J., Wang Q., Chen J., Fang S., and Duan M. Sensors Actuators B: Chem., 2017, 245, 674 LINK [Google Scholar]
  57. Cooper W. J., Sorber C. A., and Meier E. P. J. Am. Water Works Assoc., 1975, 67, (1), 34 LINK [Google Scholar]
  58. Shah A. D., Liu Z.-Q., Salhi E., Höfer T., and von Gunten U. Environ. Sci. Technol., 2015, 49, (3), 1698 LINK [Google Scholar]
  59. Shah A. D., Liu Z.-Q., Salhi E., Höfer T., Werschkun B., and von Gunten U. Environ. Sci.: Water Res. Technol., 2015, 1, (4), 465 LINK [Google Scholar]
  60. Lau S. S., Dias R. P., Martin-Culet K. R., Race N. A., Schammel M. H., Reber K. P., Roberts A. L., and Sivey J. D. Environ. Sci. Water Res. Technol., 2018, 4, (7), 926 LINK [Google Scholar]
  61. Harp D. L. ‘Current Technology of Chlorine Analysis for Water and Wastewater’, Technical Information Series, Booklet No. 17, Hach Company, Loveland, Colorado, USA, 2002, 30 pp LINK [Google Scholar]
  62. Wilde E. W. Water Res., 1991, 25, (10), 1303 LINK [Google Scholar]
  63. Chang Y.-T., Lin K.-C., and Chen S.-M. Electrochim. Acta, 2005, 51, (3), 450 LINK [Google Scholar]
  64. Kraft A., Stadelmann M., Wünsche M., and Blaschke M. Electrochem. Commun., 2006, 8, (1), 155 LINK [Google Scholar]
  65. Vorob’eva T. P., Kozlov Y. N., Koltypin Y. V., Purmal’ A. P., Rusin B. A., Tal’roze V. L., and Frankevich E. L. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1976, 25, (10), 2043 LINK [Google Scholar]
  66. Ekimov A. I. Phys. Scr., 1991, (T39), 217 LINK [Google Scholar]
  67. ‘The Water Supply (Water Quality) Regulations 2000’, SI 2000 No. 3184, The Stationery Office Limited, London, UK, 4th December, 2000 LINK [Google Scholar]
  68. Zhang J., Zhao X., Huang Z., Xu T., and Zhang Q. Carbon, 2016, 107, 844 LINK [Google Scholar]
  69. Moazami H. R., Davarani S. S. H., Yousefi T., and Keshtkar A. R. Mater. Sci. Semicond. Process., 2014, 30, 682 LINK [Google Scholar]
  70. Chen Z., and Lu M. Talanta, 2016, 160, 444 LINK [Google Scholar]
  71. Dimmock N. A., and Midgley D. Water Res., 1979, 13, (12), 1317 LINK [Google Scholar]
  72. Hazey G. J. J. Am. Water Works Assoc., 1951, 43, (4), 292 LINK [Google Scholar]
  73. Kane P. O., and Young J. M. J. Electroanal. Chem. Interfacial Electrochem., 1977, 75, (1), 255 LINK [Google Scholar]
  74. Kodera F., Umeda M., and Yamada A. Anal. Chim. Acta, 2005, 537, (1–2), 293 LINK [Google Scholar]
  75. Watanabe T., Akai K., and Einaga Y. Electrochem. Commun., 2016, 70, 18 LINK [Google Scholar]
  76. Jović M., Cortés-Salazar F., Lesch A., Amstutz V., Bi H., and Girault H. H. J. Electroanal. Chem., 2015, 756, 171 LINK [Google Scholar]
  77. Schwarzer O., and Landsberg R. J. Electroanal. Chem. Interfacial Electrochem., 1968, 19, (4), 391 LINK [Google Scholar]
  78. Pletcher D., and Valdes E. M. Anal. Chim. Acta, 1991, 246, (2), 267 LINK [Google Scholar]
  79. van den Berg A., Koudelka-Hep M., van der Schoot B. H., de Rooij N. F., Verney-Norberg E., and Grisel A. Anal. Chim. Acta, 1992, 269, (1), 75 LINK [Google Scholar]
  80. Del Campo F. J., Ordeig O., and Muñoz F. J. Anal. Chim. Acta, 2005, 554, (1–2), 98 LINK [Google Scholar]
  81. Meyler R. E. P., Edwards M. A., and Macpherson J. V Electrochem. Commun., 2018, 86, 21 LINK [Google Scholar]
  82. Lehtola M. J., Juhna T., Miettinen I. T., Vartiainen T., and Martikainen P. J. J. Ind. Microbiol. Biotechnol., 2004, 31, (11), 489 LINK [Google Scholar]
  83. Ordeig O., Mas R., Gonzalo J., del Campo J., Muñoz F. J., and de Haro C. Electroanalysis, 2005, 17, (18), 1641 LINK [Google Scholar]
  84. Macpherson J. V Phys. Chem. Chem. Phys., 2015, 17, (5), 2935 LINK [Google Scholar]
  85. Yano T., Tryk D. A., Hashimoto K., and Fujishima A. J. Electrochem. Soc., 1998, 145, (6), 1870 LINK [Google Scholar]
  86. Heim C., Ureña de Vivanco M., Rajab M., Müller E., Letzel T., and Helmreich B. Int. J. Environ. Sci. Technol., 2015, 12, (10), 3061 LINK [Google Scholar]
  87. Karuwan C., Mantim T., Chaisuwan P., Wilairat P., Grudpan K., Jittangprasert P., Einaga Y., Chailapakul O., Suntornsuk L., Anurukvorakun O., and Nacapricha D. Sensors, 2006, 6, (12), 1837 LINK [Google Scholar]
  88. Wilson R. E., Stoianov I., and O’Hare D. Electrochem. Commun., 2016, 71, 79 LINK [Google Scholar]
  89. Hoque E., Hsu L. H. H., Aryasomayajula A., Selvaganapathy P. R., and Kruse P. IEEE Sens. Lett., 2017, 1, (4), 4500504 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error