Skip to content
1887
Volume 63, Issue 2
  • ISSN: 2056-5135

Abstract

Chlorination is necessary to prevent epidemics of waterborne disease however excess chlorination is wasteful, produces harmful disinfection byproducts, exacerbates corrosion and causes deterioration in aesthetic qualities, leading to consumer complaints. Residual chlorine must be continuously monitored to prevent both under- and over-chlorination and factors including pH, temperature and fouling must be considered as these also affect the disinfectant strength of residual chlorine. Standard methods used by water utility companies to determine residual chlorine concentration in drinking water distribution systems are appraised and found to be unsuitable for continuous monitoring. A selection of newly developed methods for residual chlorine analysis are evaluated against performance criteria, to direct research towards the development of chlorine sensors that are suitable for use in water systems. It is found that fouling tolerance in particular is generally not well understood for these selected sensor technologies and that long-term trials in real systems is recommended.

Loading

Article metrics loading...

/content/journals/10.1595/205651318X15367593796080
2019-01-01
2024-11-21
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/63/2/Wilson_16a_Imp.html?itemId=/content/journals/10.1595/205651318X15367593796080&mimeType=html&fmt=ahah

References

  1. ‘Health Risks from Microbial Growth and Biofilms in Drinking Water Distribution Systems’, Office of Ground Water and Drinking Water, US EPA, Washington, DC, USA, White Paper, 17th June, 2002, 50 pp LINK https://www.epa.gov/sites/production/files/2015-09/documents/2007_05_18_disinfection_tcr_whitepaper_tcr_biofilms.pdf [Google Scholar]
  2. M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Mariñas, A. M. Mayes, Nature, 2008, 452, (7185), 301 LINK https://doi.org/10.1038/nature06599 [Google Scholar]
  3. Robens Institute, University of Surrey, UK,, ‘Disinfectants’, Fact Sheet 2.16, ‘Water Sanitation Hygiene: Fact Sheets on Environmental Sanitation’, World Health Organization, Geneva, Switzerland, 1996, pp 111–115 LINK http://www.who.int/water_sanitation_health/sanitation-waste/fs2_16.pdf?ua=1 [Google Scholar]
  4. US Code of Federal Regulation (CFR), Title 40,, ‘Protection of Environment: Analytical and Monitoring Requirements’, Parts 141.74, US Government Printing Office, Washington, DC, USA, 1st July, 2011 LINK https://www.gpo.gov/fdsys/pkg/CFR-2011-title40-vol23/pdf/CFR-2011-title40-vol23-sec141-74.pdf [Google Scholar]
  5. A. K. Camper, G. A. McFeters, Appl. Environ. Microbiol., 1979, 37, (3), 633 LINK https://aem.asm.org/content/37/3/633 [Google Scholar]
  6. C. Venkobachar, L. Iyengar, A. V. S. Prabhakara Rao, Water Res., 1977, 11, (8), 727 LINK https://doi.org/10.1016/0043-1354(77)90114-2 [Google Scholar]
  7. S. D. Richardson, TrAC Trends Anal. Chem., 2003, 22, (10), 666 LINK https://doi.org/10.1016/S0165-9936(03)01003-3 [Google Scholar]
  8. S. W. Krasner, H. S. Weinberg, S. D. Richardson, S. J. Pastor, R. Chinn, M. J. Sclimenti, G. D. Onstad, A. D. Thruston, Environ. Sci. Technol., 2006, 40, (23), 7175 LINK https://doi.org/10.1021/es060353j [Google Scholar]
  9. S. D. Richardson, ‘Disinfection By-Products: Formation and Occurrence in Drinking Water’, in “Encyclopedia of Environmental Health”, ed. J. O. Nriagu, Elsevier BV, Amsterdam, The Netherlands, 2011, pp. 110–136 LINK https://doi.org/10.1016/B978-0-444-52272-6.00276-2 [Google Scholar]
  10. Q. Zeng, Y.-X. Wang, S.-H. Xie, L. Xu, Y.-Z. Chen, M. Li, J. Yue, Y.-F. Li, A.-L. Liu, W.-Q. Lu, Environ. Health Perspect., 2014, 122, (7), 741 LINK https://doi.org/10.1289/ehp.1307067 [Google Scholar]
  11. L. Lv, T. Jiang, S. Zhang, X. Yu, Environ. Sci. Technol., 2014, 48, (14), 8188 LINK https://doi.org/10.1021/es501646n [Google Scholar]
  12. “Report of the International Conference on Primary Health Care”, Alma-Ata, USSR, 6th–12th September, 1978, World Health Organization, Geneva, Switzerland, 1978, 77 pp LINK https://www.unicef.org/about/history/files/Alma_Ata_conference_1978_report.pdf [Google Scholar]
  13. J. L. Burn, Lancet, 1951, 258, (6686), 739 LINK https://doi.org/10.1016/S0140-6736(51)91511-5 [Google Scholar]
  14. “Guidelines for Drinking-water Quality”, 4th Edn.,World Health Organization, Geneva, Switzerland, 2011, 564 pp. LINK https://www.who.int/water_sanitation_health/publications/2011/dwq_guidelines/en/ [Google Scholar]
  15. N. Graham, Urban Water, 1999, 1, (2), 183 LINK https://doi.org/10.1016/S1462-0758(00)00006-6 [Google Scholar]
  16. N. Boulay, M. Edwards, Water Res., 2001, 35, (3), 683 LINK https://doi.org/10.1016/S0043-1354(00)00320-1 [Google Scholar]
  17. I. Frateur, C. Deslouis, L. Kiene, Y. Levi, B. Tribollet, Water Res., 1999, 33, (8), 1781 LINK https://doi.org/10.1016/S0043-1354(98)00369-8 [Google Scholar]
  18. F. Hua, J. R. West, R. A. Barker, C. F. Forster, Water Res., 1999, 33, (12), 2735 LINK https://doi.org/10.1016/S0043-1354(98)00519-3 [Google Scholar]
  19. ‘Installation of 6189 Copper Anti-Fouling Tape for YSI Water Quality Probes’, Instruction Sheet 616053, YSI Incorporated, Yellow Springs, USA, 5 pp LINK https://www.ysi.com/File%20Library/Documents/Technical%20Notes/Installation-of-6189-Copper-Anti-Fouling-Tape-for-YSI-Water-Quality-Probes.pdf [Google Scholar]
  20. Y. Qin, H.-J. Kwon, M. M. R. Howlader, M. J. Deen, RSC Adv., 2015, 5, (85), 69086 LINK https://doi.org/10.1039/C5RA11291E [Google Scholar]
  21. N. G. Pizzi, W. C. Lauer, “Water Treatment Operator Training Handbook”, 3rd Edn.,American Water Works Association, Denver, USA, 2013, 294 pp [Google Scholar]
  22. G. Kirmeyer, K. Martel, G. Thompson, L. Radder, W. Klement, M. LeChevallier, H. Baribeau, A. Flores, “Optimizing Chloramine Treatment”, 2nd Edn.,Awwa Research Foundation, Denver, USA, 2004 [Google Scholar]
  23. A. E. Griffin, N. S. Chamberlin, Am. J. Public Health, 1941, 31, (8), 803 LINK https://doi.org/10.2105/AJPH.31.8.803 [Google Scholar]
  24. “Handbook of Chemistry and Physics”, ed. D. R. Lide, 85th Edn.,CRC Press LLC, Boca Raton, USA, 2004 [Google Scholar]
  25. “CRC Handbook of Chemistry and Physics”, 87th Edn., ed. D. D. Lide, Taylor and Francis Group LLC, Boca Raton, USA, 2005 [Google Scholar]
  26. D. Pletcher, J. Appl. Electrochem., 2010, 40, (7), 1441 LINK https://doi.org/10.1007/s10800-010-0071-4 [Google Scholar]
  27. J. C. Morris, J. Am. Waterworks Assoc., 1966, 58, (11), 1475 LINK https://doi.org/doi:10.1002/j.1551-8833.1966.tb01719.x [Google Scholar]
  28. H. C. Marks, F. B. Strandskov, Ann. N. Y. Acad. Sci., 1950, 53, (1), 163 LINK https://doi.org/10.1111/j.1749-6632.1950.tb31941.x [Google Scholar]
  29. C. T. Butterfield, E. Wattie, S. Megregian, C. W. Chambers, Public Health Rep., 1943, 58, (51), 1837 LINK https://doi.org/10.2307/4584715 [Google Scholar]
  30. ‘Hypochlorous Acid’, National Institute of Standards and Technology, US Department of Commerce, Gaithersburg, USA:https://webbook.nist.gov/cgi/cbook.cgi?ID=C7790923&Mask=8 (Accessed on 7th November 2018) [Google Scholar]
  31. A. Farkas, M. Dragan-Bularda, V. Muntean, D. Ciataras, S. Tigan, Cent. Eur. J. Biol., 2012, 8, (2), 201 LINK https://doi.org/10.2478/s11535-013-0126-0 [Google Scholar]
  32. A. Tamachkiarow, H.-C. Flemming, Water Sci. Technol., 2003, 47, (5), 19 LINK https://doi.org//10.2166/wst.2003.0270 [Google Scholar]
  33. S. Chowdhury, Environ. Monit. Assess., 2012, 184, (10), 6087 LINK https://doi.org/10.1007/s10661-011-2407-x [Google Scholar]
  34. A. Aisopou, I. Stoianov, N. J. D. Graham, Water Res., 2012, 46, (1), 235 LINK https://doi.org/10.1016/j.watres.2011.10.058 [Google Scholar]
  35. S. Stocks-Fischer, J. K. Galinat, S. S. Bang, Soil Biol. Biochem., 1999, 31, (11), 1563 LINK https://doi.org/10.1016/S0038-0717(99)00082-6 [Google Scholar]
  36. J. A. Sawicki, D. A. Brown, Hyperfine Interact., 1998, 117, (1–4), 371 LINK https://doi.org/10.1023/A:1012626923056 [Google Scholar]
  37. H. F. Ridgway, B. H. Olson, Appl. Environ. Microbiol., 1982, 44, (4), 972 LINK https://aem.asm.org/content/44/4/972 [Google Scholar]
  38. ‘Chemical Disinfecting Agents in Waters and Effluents – Methods for the Examination of Waters and Associated Materials’, Environment Agency, Bristol, UK, 2008, 70 pp LINK https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/316790/chlorine218_1985298.pdf [Google Scholar]
  39. L. S. Clesceri, A. D. Eaton, “Standard Methods for the Examination of Water and Wastewater”, eds. A. E. Greenberg, 18th Edn.,American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC, USA, 1992 [Google Scholar]
  40. ‘AW400: Residual Chlorine Monitor’, Data Sheet DS/AW400-EN Rev. D, ABB, Stonehouse, UK, 2010 [Google Scholar]
  41. U. Pinkernell, B. Nowack, H. Gallard, U. von Gunten, Water Res., 2000, 34, (18), 4343 LINK https://doi.org/10.1016/S0043-1354(00)00216-5 [Google Scholar]
  42. C. L. Gopu, A. S. Krishna, K. Sreenivasan, Sensors Actuators B: Chem., 2015, 209, 798 LINK https://doi.org/10.1016/j.snb.2014.12.004 [Google Scholar]
  43. M. Szili, I. Kasik, V. Matejec, G. Nagy, B. Kovacs, Sensors Actuators B: Chem., 2014, 192, 92 LINK https://doi.org/10.1016/j.snb.2013.10.080 [Google Scholar]
  44. R. Olivé-Monllau, J. Orozco, C. Fernández-Sánchez, M. Baeza, J. Bartrolí, C. Jimenez-Jorquera, F. Céspedes, Talanta, 2009, 77, (5), 1739 LINK https://doi.org/10.1016/j.talanta.2008.10.015 [Google Scholar]
  45. Y. Yan, S. Wang, Z. Liu, H. Wang, D. Huang, Anal. Chem., 2010, 82, (23), 9775 LINK https://doi.org/10.1021/ac101929q [Google Scholar]
  46. M. Xue, L. Zhang, M. Zou, C. Lan, Z. Zhan, S. Zhao, Sensors Actuators B: Chem., 2015, 219, 50 LINK https://doi.org/10.1016/j.snb.2015.05.021 [Google Scholar]
  47. H. Yu, L. Zheng, Microchim. Acta, 2016, 183, (7), 2229 LINK https://doi.org/10.1007/s00604-016-1857-9 [Google Scholar]
  48. J. Muñoz, F. Céspedes, M. Baeza, Microchem. J., 2015, 122, 189 LINK https://doi.org/10.1016/j.microc.2015.05.001 [Google Scholar]
  49. P. Salazar, M. Martín, F. J. García-García, J. L. González-Mora, A. R. González-Elipe, Sensors Actuators B: Chem., 2015, 213, 116 LINK https://doi.org/10.1016/j.snb.2015.02.092 [Google Scholar]
  50. X. Lou, Y. Zhang, J. Qin, Z. Li, Sensors Actuators B: Chem., 2012, 161, (1), 229 LINK https://doi.org/10.1016/j.snb.2011.10.024 [Google Scholar]
  51. M. Sun, H. Yu, H. Zhu, F. Ma, S. Zhang, D. Huang, S. Wang, Anal. Chem., 2014, 86, (1), 671 LINK https://doi.org/10.1021/ac403603r [Google Scholar]
  52. M. Murata, T. A. Ivandini, M. Shibata, S. Nomura, A. Fujishima, Y. Einaga, J. Electroanal. Chem., 2008, 612, (1), 29 LINK https://doi.org/10.1016/j.jelechem.2007.09.006 [Google Scholar]
  53. L. Moberg, B. Karlberg, Anal. Chim. Acta, 2000, 407, (1–2), 127 LINK https://doi.org/10.1016/S0003-2670(99)00780-1 [Google Scholar]
  54. A. T. Palin, J. Am. Water Works Assoc., 1957, 49, (7), 873 LINK https://doi.org/10.1002/j.1551-8833.1957.tb16870.x [Google Scholar]
  55. D. F. Bender, “Comparison of Methods for the Determination of Total Available Residual Chlorine in Various Sample Matrices”, EPA600/4-78-019, Environmental Monitoring and Support Laboratory, Environmental Protection Agency, Cincinnati, USA, April, 1978, 44 pp LINK https://nepis.epa.gov/Exe/ZyPDF.cgi/3000643D.PDF?Dockey=3000643D.PDF [Google Scholar]
  56. Y. Xiong, J. Tan, C. Wang, J. Wu, Q. Wang, J. Chen, S. Fang, M. Duan, Sensors Actuators B: Chem., 2017, 245, 674 LINK https://doi.org/10.1016/j.snb.2017.01.173 [Google Scholar]
  57. W. J. Cooper, C. A. Sorber, E. P. Meier, J. Am. Water Works Assoc., 1975, 67, (1), 34 LINK https://doi.org/10.1002/j.1551-8833.1975.tb02150.x [Google Scholar]
  58. A. D. Shah, Z.-Q. Liu, E. Salhi, T. Höfer, U. von Gunten, Environ. Sci. Technol., 2015, 49, (3), 1698 LINK https://doi.org/10.1021/es503920n [Google Scholar]
  59. A. D. Shah, Z.-Q. Liu, E. Salhi, T. Höfer, B. Werschkun, U. von Gunten, Environ. Sci.: Water Res. Technol., 2015, 1, (4), 465 LINK https://doi.org/10.1039/C5EW00061K [Google Scholar]
  60. S. S. Lau, R. P. Dias, K. R. Martin-Culet, N. A. Race, M. H. Schammel, K. P. Reber, A. L. Roberts, J. D. Sivey, Environ. Sci. Water Res. Technol., 2018, 4, (7), 926 LINK https://doi.org/10.1039/C8EW00062J [Google Scholar]
  61. D. L. Harp, ‘Current Technology of Chlorine Analysis for Water and Wastewater’, Technical Information Series, Booklet No. 17, Hach Company, Loveland, Colorado, USA, 2002, 30 pp LINK https://www.hach.com/cms-portals/hach_com/cms/documents/pdf/LIT/L7019-ChlorineAnalysis.pdf [Google Scholar]
  62. E. W. Wilde, Water Res., 1991, 25, (10), 1303 LINK https://doi.org/10.1016/0043-1354(91)90071-W [Google Scholar]
  63. Y.-T. Chang, K.-C. Lin, S.-M. Chen, Electrochim. Acta, 2005, 51, (3), 450 LINK https://doi.org/10.1016/j.electacta.2005.05.004 [Google Scholar]
  64. A. Kraft, M. Stadelmann, M. Wünsche, M. Blaschke, Electrochem. Commun., 2006, 8, (1), 155 LINK https://doi.org/10.1016/j.elecom.2005.11.004 [Google Scholar]
  65. T. P. Vorob’eva, Y. N. Kozlov, Y. V. Koltypin, A. P. Purmal’, B. A. Rusin, V. L. Tal’roze, E. L. Frankevich, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1976, 25, (10), 2043 LINK https://doi.org/10.1007/BF02659512 [Google Scholar]
  66. A. I. Ekimov, Phys. Scr., 1991, (T39), 217 LINK https://doi.org/10.1088/0031-8949/1991/T39/033 [Google Scholar]
  67. ‘The Water Supply (Water Quality) Regulations 2000’, SI 2000 No. 3184, The Stationery Office Limited, London, UK, 4th December, 2000 LINK http://www.legislation.gov.uk/uksi/2000/3184/made [Google Scholar]
  68. J. Zhang, X. Zhao, Z. Huang, T. Xu, Q. Zhang, Carbon, 2016, 107, 844 LINK https://doi.org/10.1016/j.carbon.2016.06.064 [Google Scholar]
  69. H. R. Moazami, S. S. H. Davarani, T. Yousefi, A. R. Keshtkar, Mater. Sci. Semicond. Process., 2014, 30, 682 LINK https://doi.org/10.1016/j.mssp.2014.09.002 [Google Scholar]
  70. Z. Chen, M. Lu, Talanta, 2016, 160, 444 LINK https://doi.org/10.1016/j.talanta.2016.07.052 [Google Scholar]
  71. N. A. Dimmock, D. Midgley, Water Res., 1979, 13, (12), 1317 LINK https://doi.org/10.1016/0043-1354(79)90178-7 [Google Scholar]
  72. G. J. Hazey, J. Am. Water Works Assoc., 1951, 43, (4), 292 LINK https://doi.org/10.1002/j.1551-8833.1951.tb15247.x [Google Scholar]
  73. P. O. Kane, J. M. Young, J. Electroanal. Chem. Interfacial Electrochem., 1977, 75, (1), 255 LINK https://doi.org/10.1016/S0022-0728(77)80087-9 [Google Scholar]
  74. F. Kodera, M. Umeda, A. Yamada, Anal. Chim. Acta, 2005, 537, (1–2), 293 LINK https://doi.org/10.1016/j.aca.2005.01.053 [Google Scholar]
  75. T. Watanabe, K. Akai, Y. Einaga, Electrochem. Commun., 2016, 70, 18 LINK https://doi.org/10.1016/j.elecom.2016.06.010 [Google Scholar]
  76. M. Jović, F. Cortés-Salazar, A. Lesch, V. Amstutz, H. Bi, H. H. Girault, J. Electroanal. Chem., 2015, 756, 171 LINK https://doi.org/10.1016/j.jelechem.2015.08.024 [Google Scholar]
  77. O. Schwarzer, R. Landsberg, J. Electroanal. Chem. Interfacial Electrochem., 1968, 19, (4), 391 LINK https://doi.org/10.1016/S0022-0728(68)80102-0 [Google Scholar]
  78. D. Pletcher, E. M. Valdes, Anal. Chim. Acta, 1991, 246, (2), 267 LINK https://doi.org/10.1016/S0003-2670(00)80960-5 [Google Scholar]
  79. A. van den Berg, M. Koudelka-Hep, B. H. van der Schoot, N. F. de Rooij, E. Verney-Norberg, A. Grisel, Anal. Chim. Acta, 1992, 269, (1), 75 LINK https://doi.org/10.1016/0003-2670(92)85135-S [Google Scholar]
  80. F. J. Del Campo, O. Ordeig, F. J. Muñoz, Anal. Chim. Acta, 2005, 554, (1–2), 98 LINK https://doi.org/10.1016/j.aca.2005.08.035 [Google Scholar]
  81. R. E. P. Meyler, M. A. Edwards, J. V Macpherson, Electrochem. Commun., 2018, 86, 21 LINK https://doi.org/10.1016/j.elecom.2017.11.004 [Google Scholar]
  82. M. J. Lehtola, T. Juhna, I. T. Miettinen, T. Vartiainen, P. J. Martikainen, J. Ind. Microbiol. Biotechnol., 2004, 31, (11), 489 LINK https://doi.org/10.1007/s10295-004-0173-2 [Google Scholar]
  83. O. Ordeig, R. Mas, J. Gonzalo, J. del Campo, F. J. Muñoz, C. de Haro, Electroanalysis, 2005, 17, (18), 1641 LINK https://doi.org/10.1002/elan.200403194 [Google Scholar]
  84. J. V Macpherson, Phys. Chem. Chem. Phys., 2015, 17, (5), 2935 LINK https://doi.org/10.1039/c4cp04022h [Google Scholar]
  85. T. Yano, D. A. Tryk, K. Hashimoto, A. Fujishima, J. Electrochem. Soc., 1998, 145, (6), 1870 LINK https://doi.org/10.1149/1.1838569 [Google Scholar]
  86. C. Heim, M. Ureña de Vivanco, M. Rajab, E. Müller, T. Letzel, B. Helmreich, Int. J. Environ. Sci. Technol., 2015, 12, (10), 3061 LINK https://doi.org/10.1007/s13762-014-0722-9 [Google Scholar]
  87. C. Karuwan, T. Mantim, P. Chaisuwan, P. Wilairat, K. Grudpan, P. Jittangprasert, Y. Einaga, O. Chailapakul, L. Suntornsuk, O. Anurukvorakun, D. Nacapricha, Sensors, 2006, 6, (12), 1837 LINK https://doi.org/10.3390/S6121837 [Google Scholar]
  88. R. E. Wilson, I. Stoianov, D. O’Hare, Electrochem. Commun., 2016, 71, 79 LINK https://doi.org/10.1016/j.elecom.2016.08.015 [Google Scholar]
  89. E. Hoque, L. H. H. Hsu, A. Aryasomayajula, P. R. Selvaganapathy, P. Kruse, IEEE Sens. Lett., 2017, 1, (4), 4500504 LINK https://doi.org/10.1109/LSENS.2017.2722958 [Google Scholar]
/content/journals/10.1595/205651318X15367593796080
Loading
/content/journals/10.1595/205651318X15367593796080
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test