Skip to content
Volume 63, Issue 1
  • ISSN: 2056-5135


In recent years, the application of high-nitrogen containing azine energy materials has been one of the hot spots in the field of energy materials in China and elsewhere. This paper reviews domestic and foreign studies into high-nitrogen azine energetic materials. The synthetic methods, structural and theoretical analysis, physical and chemical properties, sensitivity properties, thermal properties and detonation properties of some typical pyrazine energetic compounds are summarised, including: 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105) of diazines, 4,4′,6,6′-tetra(azido)azo-1,3,5-triazine (TAAT) of triazines, 3,6-dihydrazino-1,2,4,5-tetrazine (DHT), 3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine (BTATz) and 3,3′-azobis(6-amino-1,2,4,5-tetrazine) (DAAT) of tetrazine and their respective applications and potential value are described. The results of published studies reviewed here show that the application of azine energetic compounds in propellants can effectively improve the burning rate and reduce the characteristic signal; the application of azine energetic compounds in mixed explosives can reduce the sensitivity and improve the detonation performance; the application of azine energetic compounds in gas generators can reduce the combustion temperature and increase the gas content. Therefore, this class of compounds has a broad application prospect in energetic materials.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ou Y. X., and Liu J. Q. “High Energy Density Compound”, National Defense Industry Press, Beijing, China, 2005 [Google Scholar]
  2. Yang S., Xu S., Huang H., Zhang W., and Zhang X. Prog. Chem., 2008, 20, (4), 526 LINK [Google Scholar]
  3. Pagoria P. F. “Synthesis of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide”, UCRL-JC-117228, Rev. 1, Lawrence Livermore National Laboratory, Livermore, USA, 3rd January, 1995, 7 pp LINK [Google Scholar]
  4. Pagoria P. F., Mitchell A. R., Schmidt R. D., Simpson R. L., Garcia F., Forbes J. W., Swansiger R. W., and Hoffman D. M “Synthesis, Scale-up and Characterization of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105)”, UCRL-JC-130518, Lawrence Livermore National Laboratory, Livermore, USA, 27th April, 1998, 8 pp LINK [Google Scholar]
  5. Pagoria P. F., Lee G. S., Mitchell A. R., and Schmidt R. D. Thermochim. Acta, 2002, 384, (1–2), 187 LINK [Google Scholar]
  6. Kerth J., and Kuglstatter W. ‘Synthesis and Characterization of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide (NPEX-1)’, 32nd International Annual Conference of ICT, Frauhofer Institute for Chemical Technology, Karlsruhe, Germany, 3rd–6th July, 2001, pp. 166.1166.11 LINK [Google Scholar]
  7. Pagoria P. F., Mitchell A. R., and Bala K. Lawrence Livermore National Security LLC, ‘New Synthesis of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide from 2,6-Diaminopyrazine-1-Oxide’, US Patent Appl. 2009/299,067 [Google Scholar]
  8. Pagoria P. F., and Zhang M. X. Lawrence Livermore National Security LLC, ‘Synthesis of Pyrazines including 2,6-Diaminopyrazine-1-Oxyde (DAPO) and 2,6-Diamino-3,5-Dinitropyrazine-1-Oxyde (LLM-105)’, International Patent Appl. 2010/123, 806 [Google Scholar]
  9. Zuckerman N. B., Shusteff M., Pagoria P. F., and Gash A. E. J. Flow Chem., 2015, 5, (3), 178 LINK [Google Scholar]
  10. Pagoria P., Zhang M.-X., Zuckerman N., Lee G., Mitchell A., DeHope A., Gash A., Coon C., and Gallagher P. Propel. Explos. Pyrotech., 2018, 43, (1), 15 LINK [Google Scholar]
  11. Guo F., Liu Y., Liu D., and Yu Y. Chin. J. Explos. Propel., 2006, 29, (1), 17 LINK [Google Scholar]
  12. Liu J., Chen S., Ou Y., and Jin S. Chem., 2006, 69, (2), 151 LINK [Google Scholar]
  13. Yu X., Lu M., and Nie F. Chin. J. Explos. Propel., 2012, 35, (2), 10 LINK [Google Scholar]
  14. Deng M., Zhou J., Wang B., Ye Z., and Tian Z. Chinese J. Energ. Mater., 2013, 21, (3), 294 LINK [Google Scholar]
  15. Deng M., Ye Z., Su H., Liu H., and Qi Y. Chin. J. Explos. Propel., 2009, 32, (4), 50 LINK [Google Scholar]
  16. Zhou X., Cheng B., Huang J., Zhang L., Lu H., and Liao L. Chinese J. Energ. Mater., 2012, 20, (4), 501 LINK [Google Scholar]
  17. Wang Y., Ge Z., Wang B., Ye Z., Li Y., and Shang Y. Chinese J. Energ. Mater., 2011, 19, (5), 523 LINK [Google Scholar]
  18. Zhang C., Zhang X., Ma L., Wang Y., Chen J., Yuan Z., Yang L., and Zhou R. Sci. Tech. Eng., 2015, 15, (23), 1617 LINK [Google Scholar]
  19. Wang Y., Huang F., Zhang M., Hu L., Zhou J., and Zhang C. Chinese J. Energ. Mater., 2015, 23, (1), 29 LINK [Google Scholar]
  20. Wang J. M. ‘Optimization of Synthesis Process Of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide’, Masters Thesis, University of Science and Technology, Nanjing, China, 27th March, 2017, 17 pp LINK [Google Scholar]
  21. He W., Zhou G., Li J., and Tian A. J. Mol. Structure THEOCHEM, 2004, 668, (2–3), 201 LINK [Google Scholar]
  22. Li H., Nie F., Li J., and Cheng B. Chinese J. Synth. Chem., 2007, 15, (3), 296 LINK [Google Scholar]
  23. Zhang C., Wang X., and Huang H. J. Am. Chem. Soc., 2008, 130, (26), 8359 LINK [Google Scholar]
  24. Wang Y., Deng M., Lian P., Li Y., Tian Z., Ye Z., and Wang B. Chin. J. Explos. Propel., 2013, 36, (1), 38 LINK [Google Scholar]
  25. He W., Zhou G., Hu H., Tian S., Tian A., Wen Z., Zhao P., and Xu Q. Acta Chim. Sin., 2001, 59, (8), 1210 LINK [Google Scholar]
  26. He W. ‘Theoretical Research on a Novel Energetic Material LLM-105 and its Analogues’, Masters Thesis, Sichuan University, Chengdu, China, 15th April, 2002, 19 pp LINK [Google Scholar]
  27. Tran T. D., Pagoria P. F., Hoffman D. M., Cutting J. L., Lee R. S., and Simpson R. L. ‘Characterization of 2,6-Diamino-3,5-Dinitropyrazine-1-Oxide (LLM-105) as an Insensitive High Explosive Material’, 33rd International Annual Conference on ICT on Energetic Materials Synthesis, Production and Application, Karlsruhe, Germany, 25th–28th June, 2002, UCRL-JC-147932, Lawrence Livermore National Laboratory, Livermore, USA, 9th April, 2002, 15 pp LINK [Google Scholar]
  28. Kennedy J., Plaksin I., Thomas K., Martin E., Lee K.-Y., Akinci A., Asay B., Campos J., and Direito J. AIP Conf. Proc., 2004, 706, (1), 1500 LINK [Google Scholar]
  29. Tarver C. M., Urtiew P. A., and Tran T. D. J. Energ. Mater., 2005, 23, (3), 183 LINK [Google Scholar]
  30. Cutting J. L., Hodgin R. L., Hoffman D. M., Garcia F., Lee R. S., McGuire E., Mitchell A. R., Pagoria P. F., Schmidt R. D, Simpson R. L., Souers P. C., and Swansiger R. W. ‘A Small-Scale Screening Test for HE Performance – Application to the New Explosive LLM-105’, UCRL-JC-131623, 11th International Detonation Symposium, Snowmass, USA, 30th August–4th September, 1998, Lawrence Livermore National Laboratory, Livermore, USA, 19th August, 1998, pp. 828835 [Google Scholar]
  31. Tran T. D., Pagoria P. F., Hoffman D. M., Cunningham B., Simpson R. L., Lee R. S., and Cutting J. L. ‘Small-Scale Safety and Performance Characterization of New Plastic Bonded Explosives Containing LLM-105’, 12th International Detonation Symposium, 11th–6th August, 2002, Lawrence Livermore National Laboratory, Livermore, USA, 2002, 11 pp [Google Scholar]
  32. Li X., Lin Q., Peng J., and Wang B. Therm. Anal. Calorim., 2017, 127, (3), 2225 LINK [Google Scholar]
  33. Zhou J., Tian J., and Xue G. Guangdong Chem. Ind., 2016, 43, (13), 90 LINK [Google Scholar]
  34. Li Y., Huang H., and J. L., and Li J. Chinese J. Explos. Propel, 2008, 31, (5), 1 LINK [Google Scholar]
  35. Tan Y., Liu Y., and Li D. Initiators Pyrotech., 2011, (4), 26 LINK [Google Scholar]
  36. Liu Y., Huang Z., and Yu X. Explos. Shock Waves, 2004, 24, (5), 465 LINK [Google Scholar]
  37. Wu R., Huo J., Shu Y., and Duan X. Mater. Rev., 2006, 20, (11), 58 LINK [Google Scholar]
  38. Wu Z., and Hu S. Chem. Eng. Equip., 2008, (12), 103 LINK [Google Scholar]
  39. Huynh M.-H. V., Hiskey M. A., Hartline E. L., Montoya D. P., and Gilardi R. Angew. Chem. Int. Ed., 2004, 43, (37), 4924 LINK [Google Scholar]
  40. Li L., Cai W., and Zhang S. J. Sichuan Univ. Nat. Sci. Ed., 2011, 34, (5), 729 LINK [Google Scholar]
  41. Ott E. Edwin Hanton Faust, ‘Explosive and Process of Making Same’, US Patent Appl. 1921/1,390,378 [Google Scholar]
  42. Loew P., and Weisc C. D. J. Heterocycl. Chem., 1976, 13, (4), 829 LINK [Google Scholar]
  43. Gillan E. G. Chem. Mater., 2000, 12, (12), 3906 LINK [Google Scholar]
  44. Hiskey M. A., Chavez D. E., and Naud D. L. The Regents of the University of California, ‘Low-Smoke Pyrotechnic Compositions’, US Patent 6,312,537; 2001 [Google Scholar]
  45. Luo Y. J., Li S. H., Li G. P., Chai C. P., and Pang S. P. “Novel Energetic Material”, National Defense Industry Press, Beijing, China, 2015 [Google Scholar]
  46. Li X., Pang S., and Y. Y., and Luo Y. Chinese J. Energ. Mater., 2007, 15, (5), 485 LINK [Google Scholar]
  47. Li Y.-C., Zhang X.-J., Fu G., Pang S.-P., and Zhao C.-L. Chinese J. Org. Chem., 2011, 31, (9), 1484 LINK [Google Scholar]
  48. Yu Y., Li Y.-C., Qi C., Sun C.-H., and Pang S.-P. ‘Synthesis and Theoretical Studies of 4,4’,6,6’-Tetra(azido)azo-1,3,5-Triazine’, Proceedings of the 11th National Conference on Applied Chemistry, Guilin, China, 13th October, 2009, pp. 130134 LINK [Google Scholar]
  49. Geng Z. Y., and Wang D. M. J. Northwest Univ., 2012, 48, (5), 53 LINK [Google Scholar]
  50. Yan Q.-L., Musil T., Zeman S., Matyáš R., Shi X.-B., Vlček M., and Pelikán V. Thermochim. Acta, 2015, 604, 106 LINK [Google Scholar]
  51. Talawar M. B., Sivabalan R., Mukundan T., Muthurajan H., Sikder A. K., Gandhe B. R., and Rao A. S. J. Hazard. Mater., 2009, 161, (2–3), 589 LINK [Google Scholar]
  52. Ma Q., Yu Y., Zhang X., and Pang S. Chin. J. Explos. Propel., 2012, 35, (1), 46 LINK [Google Scholar]
  53. Steinhauser G., and Klapötke T. M. Angew. Chem. Int. Ed., 2008, 47, (18), 3330 LINK [Google Scholar]
  54. Li Y.-C., Qi C., Li S.-H., Zhang H.-J., Sun C.-H., Yu Y.-Z., and Pang S.-P. J. Am. Chem. Soc., 2010, 132, (35), 12172 LINK [Google Scholar]
  55. Churakov A. M., Smirnov O. Yu., Ioffe S. L., Strelenko Y. A., and Tartakovsky V. A. ChemInform, 2002, 33, (46), 167 LINK [Google Scholar]
  56. Smirnov O. Yu., Churakov A. M., Tyurin A. Yu., Strelenko Yu. A., Ioffe S. L., and Tartakovsky V. A. ChemInform, 2003, 34, (20) LINK [Google Scholar]
  57. Baker Ltd, ‘New Tetrazine Derivatives’, IE831913, 1983 [Google Scholar]
  58. Lunt E., Stevens M. F. G., Stone R., Wooldridge K. R. H., and Newlands E. S. Cancer Research Campaign Technology Ltd, ‘Tetrazine Derivatives’, US Patent 5,260,291; 1993 [Google Scholar]
  59. Marcus H. J. Aero-jet-General Corp, ‘Tetrazine Compounds’, US Patent 3,244,702; 1966 [Google Scholar]
  60. Coburn M. D., and Ott D. G. The United States of America as represented by the United States Department of Energy, ‘ADMPT and its Synthesis’, US Patent 5,274,091; 1993 [Google Scholar]
  61. Coburn M. D., and Ott D. G. ‘Synthesis of 3,6-Diamino-1,2,4,5-Tetrazine’, US Patent 5,281,706; 1994 [Google Scholar]
  62. Coburn M. D., Hiskey M. A., Lee K.-Y., Ott D. G., and Stinecipher M. M. J. Heterocyc. Chem., 1993, 30, (6), 1593 LINK [Google Scholar]
  63. Chavez D. E., Hiskey M. A., and Gilardi R. D. Angew. Chem. Int. Ed., 2000, 39, (10), 1791 LINK<1791::AID-ANIE1791>3.0.CO;2-9 [Google Scholar]
  64. Chavez D. E., and Hiskey M. A. J. Energ. Mater., 1999, 17, (4), 357 LINK [Google Scholar]
  65. Hiskey M. A., Goldman N., and Stine J. R. J. Energ. Mater., 1998, 16, (2–3), 119 LINK [Google Scholar]
  66. Talawar M. B., Sivabalan R., Senthilkumar N., Prabhu G., and Ashtana S. N. J. Haz. Mater., 2004, 113, (1–3), 11 LINK [Google Scholar]
  67. Cutivet A., Leroy E., Pasquinet E., and Poullain D. Tetrahedron Lett., 2008, 49, (17), 2748 LINK [Google Scholar]
  68. Klapötke T. M., Preimesser A., Schedlbauer S., and Stiersstorfer J. Cent. Eur. J. Energ. Mater., 2013, 10, (2), 151 LINK [Google Scholar]
  69. Wang B., Lian P., Liu W., Zhang H., Wang X., and Bai J. Chinese J. Energ. Mater., 2006, 14, (5), 352 LINK [Google Scholar]
  70. Pan W., He J., and Tao Y. Chinese J. Energ. Mater., 2006, 14, (2), 116 LINK [Google Scholar]
  71. Jia S.-Y., Zhang H.-H., and Wang B.-Z. ‘Synthesis and Properties of 3,6-Dimercapto-1,2,4,5-Tetrazine and its Energetic Salts’, Proceedings of the 2nd National Symposium on Hazardous Materials and Safety Emergency Technology, Sichuan, China, 14th November, 2013, p. 24 LINK [Google Scholar]
  72. He D. ‘Synthesis of Tetrazine High Nitrogen Energetic Compounds’, Masters Thesis, Nanjing University of Science and Technology, Nanjing, China, 20th March, 2012, 10 LINK [Google Scholar]
  73. Zhang X., and Gong X. Canadian J. Chem., 2016, 94, (1), 28 LINK [Google Scholar]
  74. Feng J.-L., Zhang J.-G., Wang K., and Zhang T.-L. Chem. J. Chinese Univ., 2011, 32, (7), 1519 LINK [Google Scholar]
  75. Kerth J., and Löbbecke S. Propel. Explos. Pyrotech., 2002, 27, (3), 111 LINK<111::AID-PREP111>3.0.CO;2-O [Google Scholar]
  76. Zhang H., Jia S., Wang B., Wang X., Zhou C., Lai W., and Li J. Chin. J. Explos. Propel., 2014, 37, (2), 23 LINK [Google Scholar]
  77. Sinditskii V. P., Egorshev V. Yu., Rudakov G. F., Burzhava A. V., Filatov S. A., and Sang L. D. Thermochim. Acta, 2012, 535, 48 LINK [Google Scholar]
  78. Khandhadia P. S., Burns S. P., and Williams G. K. ‘High Gas Yield Non-Azide Gas Generants, US Patent, 6,210,505; 2001 [Google Scholar]
  79. Fallis S., Reed R., Lu Y.-C., Wierenga P. H., and Holland G. F. ‘Advanced Propellant/Additive Development for Fire Suppressing Gas Generators’, Tenth Annual Halon Options Technical Working Conference, Albuquerque, USA, May, 2000, pp. 361370 [Google Scholar]
  80. Chavez D. E., Hiskey M. A., and Berger B. ‘The Utility of 3,6-Dihydrazino-1,2,4,5-Tetrazine(DHT) in Indoor Pyrotechnics’, 24th International Pyrotechnics Seminar, Monterey, USA, 27th–31st July, 1998, pp. 161178 [Google Scholar]
  81. Hiskey M. A., Chavez D. E., and Naud D. ‘Propellant Containing 3,6-BIS(1H-1,2,3,4-Tetrazol-5-Ylamino)-1,2,4,5-Tetrazine or Salts Thereof’, US Patent 6,458,227; 2002 [Google Scholar]
  82. Hiskey M. A., Chavez D. E., and Naud D. ‘3,6-BIS(1H-1,2,3,4-Tetrazol-5-Ylamino)-1,2,4,5-Tetrazine or Salt Thereof’, US Patent, 6,657,059; 2003 [Google Scholar]
  83. Wang B., Lai W., Liu Q., Lian P., and Xue Y. Front. Chem. China, 2009, 4, (1), 69 LINK [Google Scholar]
  84. Yue S., and Yang S. Energ. Mater., 2004, 12, (3), 155 LINK [Google Scholar]
  85. Xiong Y., Shu Y., Wang X., Zong H., Zhou Y., and Yin M. J. Explos. Propel., 2008, 31, (1), 1 LINK [Google Scholar]
  86. Saikia A., Sivabalan R., Polke B. G., Gore G. M., Singh A., Rao A. S., and Sikder A. K. J. Haz. Mater., 2009, 170, (1), 306 LINK [Google Scholar]
  87. Zhang X., Zhu H., Yang S., Zhang W., Zhao F., Liu Z., and Qing P. J. Prop. Technol., 2007, 28, (3), 322 LINK [Google Scholar]
  88. Li W., Ren Y.-H., Zhao F.-Q., Zhang X.-B., Ma H.-X., Xu K.-Z., Wang B.-Z., Yi J.-H., Song J.-R., and Hu R.-Z. Acta Phys.-Chim. Sin., 2013, 29, (10), 2087 LINK [Google Scholar]
  89. Lei Y., Xu S., and Yang S. Chem. Propellants Polym. Mater., 2007, 5, (3), 1 LINK [Google Scholar]
  90. Yi J.-H., Zhao F.-Q., Wang B.-Z., Liu Q., Zhou C., Hu R.-Z., Ren Y.-H., Xu S.-Y., Xu K.-Z., and Ren X.-N. J. Haz. Mater., 2010, 181, (1–3), 432 LINK [Google Scholar]
  91. Yi J.-H., Zhao F.-Q., Ren Y.-H., Wang B.-Z., Zhou C., Ren X.-N., Xu S.-Y., Hao H.-X., and Hu R.-Z. J. Therm. Anal. Calorim., 2011, 104, (3), 1029 LINK [Google Scholar]
  92. Yi J., Xu S., Zhao F., Wang Y., An T., and Pei Q. Chem. Propellants Polym. Mater., 2013, 11, (6), 59 LINK [Google Scholar]
  93. Yi J., Zhao F., Wang B., Ren Y., Xu S., Wang Z., and Li S. J. Propul. Technol., 2012, 33, (4), 609 LINK [Google Scholar]
  94. Ren Y., Li W., Zhang X., Zhao F., Yi J., Ma H., Xu K., and Song J. Chinese J. Appl. Chem., 2013, 30, (9), 1036 LINK [Google Scholar]
  95. Li W., Ren Y., Zhao F., Zhang X., Ma H., Xu K., and Wang B. J. Funct. Mater., 2013, 44, (22), 3326 LINK [Google Scholar]
  96. Yang J., Liu Q., Ren Y., Zhang X., Ma H., Xu K., Zhao F., and Hu R. Chinese J. Appl. Chem., 2017, 34, (8), 928 LINK [Google Scholar]
  97. Hiskey M. A., Chavez D. E., and Naud D. ‘Preparation of 3,3′-Azobis(6-Amino-1,2,4,5-Tetrazine)’, US Patent 6,342,589; 2002 [Google Scholar]
  98. Yue S.-Y. ‘Synthesis and Application Correlation of High Nitrogen Energetic Compounds’, National University of Defense Technology, Changsha, China, 2003 LINK [Google Scholar]
  99. Xu S. L. ‘Synthesis and Amplification of High Nitrogen Energetic Compounds and their Explosive Properties’, National University of Defense Technology, Changsha, China, 4th November, 2005 LINK [Google Scholar]
  100. Xu S., Yang S., Yue S., and Xin C. Chinese J. Synth. Chem., 2005, 13, (6), 584 LINK [Google Scholar]
  101. Wang B., Lian P., Liu Q., Wang X., Zhang Z., and Huang X. Chin. J. Explos. Propel., 2006, 29, (2), 15 LINK [Google Scholar]
  102. Xu S. L., Yang S. Q., Zhang W., and Zhang X. G. Chem. Bull., 2006, (9), 685 LINK [Google Scholar]
  103. Wang B., Lai W., Lian P., and Jia S. Chinese J. Org. Chem., 2009, 29, (8), 1243 LINK [Google Scholar]
  104. Xiong Y. ‘Theoretical Study on Thermal Decomposition Mechanism of Tetrazine-Based High Nitrogen Compounds’, Dissertation of Chinese Academy of Engineering Physics, Sichuan, China, 25th April, 2007, 70 pp LINK [Google Scholar]
  105. Loebbecke S., Schuppler H., and Schweikert W. J. Therm. Anal. Calorim., 2003, 72, (2), 453 LINK [Google Scholar]
  106. Yang S., and Yue S. T. Chinese J. Energ. Mater., 2003, 11, (4), 231 LINK [Google Scholar]
  107. Paine R. T., Koestle W., Borek T. T., Wood G. L., Pruss E. A., Duesler E. N., and Hiskey M. A. Inorg. Chem., 1999, 38, (16), 3738 LINK [Google Scholar]
  108. Hiskey M. A., Chavez D., Naud D. L., Son S. F., Berghout H. L., and Bolme C. A. ‘Progress in High-Nitrogen Chemistry in Explosives’, 27th International Pyrotechnics Seminar, Grand Junction, USA, 16th–21st July, 2000, pp. 314 [Google Scholar]
  109. Xu S., Yang S., Zhang W., and Zhang X. J. Nat. Uni. Def. Technol., 2006, 28, (6), 17 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error