Skip to content
1887
Volume 63, Issue 2
  • ISSN: 2056-5135
  • oa Designing Parameters of Surfactant-Free Electrochemical Sensors for Dopamine and Uric Acid on Nitrogen Doped Graphene Films

    Evaluating the correlation between the content of N-configurations and the sensing for electrochemically active molecules

  • Authors: Boitumelo J. Matsoso1, Tsenolo Lerotholi1, Neil J. Coville1 and Glenn Jones2
  • Affiliations: 1 DST-NRF Centre of Excellence in Strong Materials and The Molecular Sciences Institute, School of Chemistry, University of the WitwatersrandPrivate Bag 3, PO WITS, 2050South Africa 2 Johnson MattheyBlounts Court, Sonning Common, Reading, RG4 9NHUK
  • Source: Johnson Matthey Technology Review, Volume 63, Issue 2, Apr 2019, p. 76 - 88
  • DOI: https://doi.org/10.1595/205651319X15472048744138
    • Published online: 01 Jan 2019

Abstract

Electrochemistry studies on the derivatives of graphene have been in the forefront of chemical research in recent years. The large specific surface area, high electrical conductivity, fast electron transfer rate and excellent biocompatibility to biomolecules constitute a few of the underlying reasons for the extensive application of graphene derivatives in modern electrochemistry and related technologies. Much interest in graphene derivatives has been driven by the ease of intentional functionalisation of the carbon backbone of graphene with dopants, such as nitrogen. Doping enhances the electrical conductivity and biocompatibility of nitrogen-doped graphene (NGr) nanomaterials and aids in their potential applications in electrochemical sensing and spectroelectrochemical devices. Despite the application of NGr in electrochemical sensing devices, the major challenge for reproducible industrial application still lies in the use of surfactants and binders and the limited knowledge on the correlation between the N-configurations and the electrocatalytic performance of these NGr-based electrodes. Therefore, the purpose of this short review article is to highlight some recent progress on the application of NGr derivatives for electrochemical detection of biomarkers such as uric acid and dopamine. The paper will also illustrate design parameters for new surfactant-free two-dimensional (2D) N-doped graphene based electrochemical sensors with variable N-functionalities for the detection of dopamine and uric acid.

Loading

Article metrics loading...

/content/journals/10.1595/205651319X15472048744138
2019-01-01
2024-12-26
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/63/2/Matsoso_16a_Imp.html?itemId=/content/journals/10.1595/205651319X15472048744138&mimeType=html&fmt=ahah

References

  1. H.-W. Wang, Y.-H. Wei, H.-W. Guo, Anticancer Agents Med. Chem., 2009, 9, (9), 1012 LINK https://doi.org/10.2174/187152009789377718 [Google Scholar]
  2. J. Li, X. Lin, Sensors Actuators B: Chem., 2007, 124, (2), 486 LINK https://doi.org/10.1016/j.snb.2007.01.021 [Google Scholar]
  3. A. J. Bard, L. R. Faulker, “Electrochemical Methods: Fundamentals and Applications”, 2nd Edn.,John Wiley and Sons Inc, New York, USA, 2001 [Google Scholar]
  4. Z. Wang, S. Liu, P. Wu, C. Cai, Anal. Chem., 2009, 81, (4), 1638 LINK https://doi.org/10.1021/ac802421h [Google Scholar]
  5. D. M. Anjo, M. Kahr, M. M. Khodabakhsh, S. Nowinski, M. Wanger, Anal. Chem., 1989, 61, (23), 2603 LINK https://doi.org/10.1021/ac00198a004 [Google Scholar]
  6. H. Xu, J. Xiao, L. Yan, L. Zhu, B. Liu, J. Electroanal. Chem., 2016, 779, 92 LINK https://doi.org/10.1016/j.jelechem.2016.04.032 [Google Scholar]
  7. Z.-H. Sheng, X.-Q. Zheng, J.-Y. Xu, W.-J. Bao, F.-B. Wang, X.-H. Xia, Biosens. Bioelectron., 2012, 34, (1), 125 LINK https://doi.org/10.1016/j.bios.2012.01.030 [Google Scholar]
  8. P. K. Aneesh, S. R. Nambiar, T. P. Rao, A. Ajayaghosh, Anal. Methods, 2014, 6, (14), 5322 LINK https://doi.org/10.1039/c4ay00043a [Google Scholar]
  9. L. Wang, P. Huang, J. Bai, H. Wang, X. Wu, Y. Zhao, Int. J. Electrochem. Sci., 2006, 1, (6), 334 LINK http://www.electrochemsci.org/papers/1060334.pdf [Google Scholar]
  10. G. Liu, W. Ma, Y. Luo, D. Sun, S. Shao, J. Anal. Methods Chem., 2014, 984314 LINK https://doi.org/10.1155/2014/984314 [Google Scholar]
  11. Y.-R. Kim, S. Bong, Y.-J. Kang, Y. Yang, R. K. Mahajan, J. S. Kim, H. Kim, Biosens. Bioelectron., 2010, 25, (10), 2366 LINK https://doi.org/10.1016/j.bios.2010.02.031 [Google Scholar]
  12. S. Qi, B. Zhao, H. Tang, X. Jiang, Electrochim. Acta, 2015, 161, 395 LINK https://doi.org/10.1016/j.electacta.2015.02.116 [Google Scholar]
  13. K. Jackowska, P. Krysinski, Anal. Bioanal. Chem., 2013, 405, (11), 3753 LINK https://doi.org/10.1007/s00216-012-6578-2 [Google Scholar]
  14. L. M. Niu, K. Q. Lian, H. M. Shi, Y. B. Wu, W. J. Kang, S. Y. Bi, Sensors Actuators B: Chem., 2013, 178, 10 LINK https://doi.org/10.1016/j.snb.2012.12.015 [Google Scholar]
  15. M. Sajid, M. K. Nazal, M. Mansha, A. Alsharaa, S. M. S. Jillani, C. Basheer, TrAC Trends Anal. Chem., 2016, 76, 15 LINK https://doi.org/10.1016/j.trac.2015.09.006 [Google Scholar]
  16. A. Gottås, Å. Ripel, F. Boix, V. Vindenes, J. Mørland, E. L. Øiestad, J. Pharmacol. Toxicol. Methods, 2015, 74, 75 LINK https://doi.org/10.1016/j.vascn.2015.06.002 [Google Scholar]
  17. S. B. Floresco, A. R. West, B. Ash, H. Moore, A. A. Grace, Nat. Neurosci., 2003, 6, (9), 968 LINK https://doi.org/10.1038/nn1103 [Google Scholar]
  18. I. Sano, T. Gamo, Y. Kakimoto, K. Taniguchi, M. Takesada, K. Nishinuma, Biochim. Biophys. Acta, 1959, 32, 586 LINK https://doi.org/10.1016/0006-3002(59)90652-3 [Google Scholar]
  19. R. M. Wightman, L. J. May, A. C. Michael, Anal. Chem., 1988, 60, (13), 769A LINK https://doi.org/10.1021/ac00164a718 [Google Scholar]
  20. S. Kapur, D. Mamo, Prog. Neuro-Psychopharmacol. Biol. Psychiatry, 2003, 27, (7), 1081 LINK https://doi.org/10.1016/j.pnpbp.2003.09.004 [Google Scholar]
  21. “Handbook of the Neuroscience of Aging”, eds. C. V. Mobbs, P. R. Hof, Elsevier Inc, London, UK, 2009 [Google Scholar]
  22. M. Mazzali, J. Hughes, Y.-G. Kim, J. A. Jefferson, D.-H. Kang, K. L. Gordon, H. Y. Lan, S. Kivlighn, R. J. Johnson, Hypertension, 2001, 38, (5), 1101 LINK https://doi.org/10.1161/hy1101.092839 [Google Scholar]
  23. R. Gowrishankar, M. K. Hahn, R. D. Blakely, Neurochem. Int., 2014, 73, 42 LINK https://doi.org/10.1016/j.neuint.2013.10.016 [Google Scholar]
  24. K. A. Montagu, Nature, 1957, 180, (4579), 244 LINK https://doi.org/10.1038/180244a0 [Google Scholar]
  25. V. V. S. Eswara Dutt, H. A. Mottola, Anal. Chem., 1974, 46, (12), 1777 LINK https://doi.org/10.1021/ac60348a041 [Google Scholar]
  26. S. Liu, X. Xing, J. Yu, W. Lian, J. Li, M. Cui, J. Huang, Biosens. Bioelectron., 2012, 36, (1), 186 LINK https://doi.org/10.1016/j.bios.2012.04.011 [Google Scholar]
  27. X. Chen, G. Wu, Z. Cai, M. Oyama, X. Chen, Microchim. Acta, 2014, 181, (7–8), 689 LINK https://doi.org/10.1007/s00604-013-1098-0 [Google Scholar]
  28. J. Yu, S. Wang, L. Ge, S. Ge, Biosens. Bioelectron., 2011, 26, (7), 3284 LINK https://doi.org/10.1016/j.bios.2010.12.044 [Google Scholar]
  29. H. Sun, J. Chao, X. Zuo, S. Su, X. Liu, L. Yuwen, C. Fan, L. Wang, RSC Adv., 2014, 4, (52), 27625 LINK https://doi.org/10.1039/c4ra04046e [Google Scholar]
  30. L. Wang, X. Lu, C. Wen, Y. Xie, L. Miao, S. Chen, H. Li, P. Li, Y. Song, J. Mater. Chem. A, 2015, 3, (2), 608 LINK https://doi.org/10.1039/c4ta04724a [Google Scholar]
  31. P. Shakkthivel, S.-M. Chen, Biosens. Bioelectron., 2007, 22, (8), 1680 LINK https://doi.org/10.1016/j.bios.2006.07.026 [Google Scholar]
  32. S. Cinti, F. Arduini, M. Carbone, L. Sansone, I. Cacciotti, D. Moscone, G. Palleschi, Electroanal., 2015, 27, (9), 2230 LINK https://doi.org/10.1002/elan.201500168 [Google Scholar]
  33. A. Ambrosi, C. K. Chua, A. Bonanni, M. Pumera, Chem. Rev., 2014, 114, (14), 7150 LINK https://doi.org/10.1021/cr500023c [Google Scholar]
  34. A. Ambrosi, C. K. Chua, N. M. Latiff, A. H. Loo, C. H. A. Wong, A. Y. S. Eng, A. Bonanni, M. Pumera, Chem. Soc. Rev., 2016, 45, (9), 2458 LINK https://doi.org/10.1039/c6cs00136j [Google Scholar]
  35. M. Pumera, B. Šmíd, K. Veltruská, J. Nanosci. Nanotechnol., 2009, 9, (4), 2671 LINK https://doi.org/10.1166/jnn.2009.031 [Google Scholar]
  36. A. A. Abdelwahab, Y.-B. Shim, Sensors Actuators B: Chem., 2015, 221, 659 LINK https://doi.org/10.1016/j.snb.2015.07.016 [Google Scholar]
  37. S. Komathi, A. I. Gopalan, K.-P. Lee, Analyst, 2010, 135, (2), 397 LINK https://doi.org/10.1039/b918335c [Google Scholar]
  38. S. Cheemalapati, S. Palanisamy, V. Mani, S.-M. Chen, Talanta, 2013, 117, 297 LINK https://doi.org/10.1016/j.talanta.2013.08.041 [Google Scholar]
  39. A. K. Geim, K. S. Novoselov, Nature Mater., 2007, 6, (3), 183 LINK https://doi.org/10.1038/nmat1849 [Google Scholar]
  40. K. S. Novoselov, A. K. Geim, S. V. Morosov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science, 2004, 306, (5696), 666 LINK https://doi.org/10.1126/science.1102896 [Google Scholar]
  41. B. J. Matsoso, K. Ranganathan, B. K. Mutuma, T. Lerotholi, G. Jones, N. J. Coville, RSC Adv., 2016, 6, (108), 106914 LINK https://doi.org/10.1039/c6ra24094a [Google Scholar]
  42. D. Han, T. Han, C. Shan, A. Ivaska, L. Niu, Electroanal., 2010, 22, (17–18), 2001 LINK https://doi.org/10.1002/elan.201000094 [Google Scholar]
  43. X. Dong, D. Fu, W. Fang, Y. Shi, P. Chen, L.-J. Li, Small, 2009, 5, (12), 1422 LINK https://doi.org/10.1002/smll.200801711 [Google Scholar]
  44. R. Lv, M. Terrones, Mater. Lett., 2012, 78, 209 LINK https://doi.org/10.1016/j.matlet.2012.04.033 [Google Scholar]
  45. C.-K. Chang, S. Kataria, C.-C. Kuo, A. Ganguly, B.-Y. Wang, J.-Y. Hwang, K.-J. Huang, W.-H. Yang, S.-B. Wang, C.-H. Chuang, M. Chen, C.-I. Huang, W.-F. Pong, K.-J. Song, S.-J. Chang, J.-H. Guo, Y. Tai, M. Tsujimoto, S. Isoda, C.-W. Chen, L.-C. Chen, K.-H. Chen, ACS Nano, 2013, 7, (2), 1333 LINK https://doi.org/10.1021/nn3049158 [Google Scholar]
  46. P. P. Shinde, V. Kumar, Phys. Rev. B, 2011, 84, (12), 125401 LINK https://doi.org/10.1103/physrevb.84.125401 [Google Scholar]
  47. M. Pumera, A. Ambrosi, A. Bonanni, E. L. K. Chng, H. L. Poh, TrAC Trends Anal. Chem., 2010, 29, (9), 954 LINK https://doi.org/10.1016/j.trac.2010.05.011 [Google Scholar]
  48. D. A. C. Brownson, D. K. Kampouris, C. E. Banks, Chem. Soc. Rev., 2012, 41, (21), 6944 LINK https://doi.org/10.1039/c2cs35105f [Google Scholar]
  49. K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature, 2005, 438, (7065), 197 LINK https://doi.org/10.1038/nature04233 [Google Scholar]
  50. C. Zhang, Z. Zhang, Q. Yang, W. Chen, Electroanal., 2018, 30, (11), 2504 LINK https://doi.org/10.1002/elan.201800522 [Google Scholar]
  51. W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 1958, 80, (6), 1339 LINK https://doi.org/10.1021/ja01539a017 [Google Scholar]
  52. N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W.-W. Liu, C. H. Voon, Procedia Eng., 2017, 184, 469 LINK https://doi.org/10.1016/j.proeng.2017.04.118 [Google Scholar]
  53. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, Carbon, 2007, 45, (7), 1558 LINK https://doi.org/10.1016/j.carbon.2007.02.034 [Google Scholar]
  54. H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, Y. Chen, ACS Nano, 2008, 2, (3), 463 LINK https://doi.org/10.1021/nn700375n [Google Scholar]
  55. S. Bak, D. Kim, H. Lee, Curr. Appl. Phys., 2016, 16, (9), 1192 LINK https://doi.org/10.1016/j.cap.2016.03.026 [Google Scholar]
  56. L. A. Ponomarenko, F. Schedin, M. I. Katsnelson, R. Yang, E. W. Hill, K. S. Novoselov, A. K. Geim, Science, 2008, 320, (5874), 356 LINK https://doi.org/10.1126/science.1154663 [Google Scholar]
  57. L. Wang, W. Li, B. Wu, Z. Li, S. Wang, Y. Liu, D. Pan, M. Wu, Chem. Eng. J., 2016, 300, 75 LINK https://doi.org/10.1016/j.cej.2016.04.123 [Google Scholar]
  58. M. Hassan, E. Haque, K. R. Reddy, A. I. Minett, J. Chen, V. G. Gomes, Nanoscale, 2014, 6, (20), 11988 LINK https://doi.org/10.1039/c4nr02365j [Google Scholar]
  59. Y. Wang, Y. Huang, B. Wang, T. Fang, J. Chen, C. Liang, J. Electroanal. Chem., 2016, 782, 76 LINK https://doi.org/10.1016/j.jelechem.2016.09.050 [Google Scholar]
  60. X. Dong, X. Wang, L. Wang, H. Song, H. Zhang, W. Huang, P. Chen, ACS Appl. Mater. Interfaces, 2012, 4, (6), 3129 LINK https://doi.org/10.1021/am300459m [Google Scholar]
  61. L. Yang, D. Liu, J. Huang, T. You, Sensors Actuators B: Chem., 2014, 193, 166 LINK https://doi.org/10.1016/j.snb.2013.11.104 [Google Scholar]
  62. X. Yu, K. Sheng, G. Shi, Analyst, 2014, 139, (18), 4525 LINK https://doi.org/10.1039/c4an00604f [Google Scholar]
  63. P. Kanyong, S. Rawlinson, J. Davis, Chemosens., 2016, 4, (4), 25 LINK https://doi.org/10.3390/chemosensors4040025 [Google Scholar]
  64. H. Wang, F. Ren, C. Wang, B. Yang, D. Bin, K. Zhang, Y. Du, RSC Adv., 2014, 4, (51), 26895 LINK https://doi.org/10.1039/c4ra03148b [Google Scholar]
  65. B. J. Matsoso, T. Lerotholi, G. Jones, N. J. Coville, ‘CVD Growth of Pristine and N-Doped Graphene Films for Support of Platinum and Palladium Nanoparticles in Electrochemical Sensing of Dopamine and Uric Acid’, PhD Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2017, pp. 96–131 [Google Scholar]
  66. J. G. Manjunatha, B. E. Kumara Swamy, G. P. Mamatha, U. Chandra, E. Niranjana, B. S. Sherigara, Int. J. Electrochem. Sci., 2009, 4, (2), 187 LINK http://www.electrochemsci.org/papers/vol4/4020187.pdf [Google Scholar]
  67. J. Oni, T. Nyokong, Anal. Chim. Acta, 2001, 434, (1), 9 LINK https://doi.org/10.1016/s0003-2670(01)00822-4 [Google Scholar]
  68. J. F. Rusling, Acc. Chem. Res., 1991, 24, (3), 75 LINK https://doi.org/10.1021/ar00003a003 [Google Scholar]
  69. Y. Sun, J. Fei, K. Wu, S. Hu, Anal. Bioanal. Chem., 2003, 375, (4), 544 LINK https://doi.org/10.1007/s00216-002-1743-7 [Google Scholar]
  70. J. G. Manjunatha, M. Deraman, N. H. Basri, N. S. M. Nor, I. A. Talib, N. Ataollahi, Comptes Rendus Chim., 2014, 17, (5), 465 LINK https://doi.org/10.1016/j.crci.2013.09.016 [Google Scholar]
  71. E. Colín-Orozco, M. T. Ramírez-Silva, S. Corona-Avendaño, M. Romero-Romo, M. Palomar-Pardavé, Electrochim. Acta, 2012, 85, 307 LINK https://doi.org/10.1016/j.electacta.2012.08.081 [Google Scholar]
  72. J. Aldana-González, M. Palomar-Pardavé, S. Corona-Avendaño, M. G. Montes de Oca, M. T. Ramírez-Silva, M. Romero-Romo, J. Electroanal. Chem., 2013, 706, 69 LINK https://doi.org/10.1016/j.jelechem.2013.07.037 [Google Scholar]
  73. J. Aldana-González, J. Olvera-García, M. G. Montes de Oca, M. Romero-Romo, M. T. Ramírez-Silva, M. Palomar-Pardavé, Electrochem. Commun., 2015, 56, 70 LINK https://doi.org/10.1016/j.elecom.2015.04.014 [Google Scholar]
  74. G. Jiang, T. Jiang, H. Zhou, J. Yao, X. Kong, RSC Adv., 2015, 5, (12), 9064 LINK https://doi.org/10.1039/c4ra16773b [Google Scholar]
  75. O. Niwa, G. Xu, Y. Iwasaki, Electrochem., 2006, 74, (2), 135 LINK https://doi.org/10.5796/electrochemistry.74.135 [Google Scholar]
  76. F. Ye, C. Feng, J. Jiang, S. Han, Electrochim. Acta, 2015, 182, 935 LINK https://doi.org/10.1016/j.electacta.2015.10.001 [Google Scholar]
  77. G. Camardese, D. Di Giuda, M. Di Nicola, F. Cocciolillo, A. Giordano, L. Janiri, R. Guglielmo, J. Psychiatr. Res., 2014, 51, 7 LINK https://doi.org/10.1016/j.jpsychires.2013.12.006 [Google Scholar]
  78. Y. Zhang, W. Lei, Y. Xu, X. Xia, Q. Hao, Nanomater., 2016, 6, (10), 178 LINK https://doi.org/10.3390/nano6100178 [Google Scholar]
  79. J. Yang, J. R. Strickler, S. Gunasekaran, Nanoscale, 2012, 4, (15), 4594 LINK https://doi.org/10.1039/c2nr30618b [Google Scholar]
  80. Y. Zhang, Y. Ji, Z. Wang, S. Liu, T. Zhang, RSC Adv., 2015, 5, (129), 106307 LINK https://doi.org/10.1039/c5ra24727f [Google Scholar]
  81. L. Hua, X. Wu, R. Wang, Analyst, 2012, 137, (24), 5716 LINK https://doi.org/10.1039/c2an35612k [Google Scholar]
  82. C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Langmuir, 2009, 25, (20), 12030 LINK https://doi.org/10.1021/la903265p [Google Scholar]
  83. J. Yan, S. Liu, Z. Zhang, G. He, P. Zhou, H. Liang, L. Tian, X. Zhou, H. Jiang, Coll. Surf. B: Biointer., 2013, 111, 392 LINK https://doi.org/10.1016/j.colsurfb.2013.06.030 [Google Scholar]
  84. M. Liu, Q. Chen, C. Lai, Y. Zhang, J. Deng, H. Li, S. Yao, Biosens. Bioelectron., 2013, 48, 75 LINK https://doi.org/10.1016/j.bios.2013.03.070 [Google Scholar]
  85. Q. He, J. Liu, X. Liu, G. Li, P. Deng, J. Liang, Sensors, 2018, 18, (1), 199 LINK https://doi.org/10.3390/s18010199 [Google Scholar]
  86. Y. Shen, Q. Sheng, J. Zheng, Anal. Methods, 2017, 9, (31), 4566 LINK http://doi.org/10.1039/C7AY00717E [Google Scholar]
  87. Z. Wang, J. Tang, F. Zhang, J. Xia, N. Sun, G. Shi, Y. Xia, L. Xia, L. Qin, Int. J. Electrochem. Sci., 2013, 8, (7), 9967 LINK http://www.electrochemsci.org/papers/vol8/80709967.pdf [Google Scholar]
  88. Y. Li, Y. Gu, B. Zheng, L. Luo, C. Li, X. Yan, T. Zhang, N. Lu, Z. Zhang, Talanta, 2017, 162, 80 LINK https://doi.org/10.1016/j.talanta.2016.10.016 [Google Scholar]
  89. Y. Liu, P. She, J. Gong, W. Wu, S. Xu, J. Li, K. Zhao, A. Deng, Sensors Actuators B: Chem., 2015, 221, 1542 LINK https://doi.org/10.1016/j.snb.2015.07.086 [Google Scholar]
  90. L. Zhao, H. Li, S. Gao, M. Li, S. Xu, C. Li, W. Guo, C. Qu, B. Yang, Electrochim. Acta, 2015, 168, 191 LINK https://doi.org/10.1016/j.electacta.2015.03.215 [Google Scholar]
  91. C. Chen, C. Zhang, X. Gao, Z. Zhuang, C. Du, W. Chen, Anal. Chem., 2018, 90, (3), 1983 LINK https://doi.org/10.1021/acs.analchem.7b04070 [Google Scholar]
  92. C. Zhang, L. Li, J. Ju, W. Chen, Electrochim. Acta, 2016, 210, 181 LINK https://doi.org/10.1016/j.electacta.2016.05.151 [Google Scholar]
  93. M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett., 2008, 8, (10), 3498 LINK https://doi.org/10.1021/nl802558y [Google Scholar]
  94. L. Lai, J. R. Potts, D. Zhan, L. Wang, C. K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R. S. Ruoff, Energy Environ. Sci., 2012, 5, (7), 7936 LINK https://doi.org/10.1039/c2ee21802j [Google Scholar]
  95. B. J. Matsoso, B. K. Mutuma, C. Billing, K. Ranganathan, T. Lerotholi, G. Jones, N. J. Coville, Electrochim. Acta, 2018, 286, 29 LINK https://doi.org/10.1016/j.electacta.2018.08.017 [Google Scholar]
  96. B. J. Matsoso, B. K. Mutuma, C. Billing, K. Ranganathan, T. Lerotholi, G. Jones, N. J. Coville, J. Electroanal. Chem., 2019, 833, 160 LINK https://doi.org/10.1016/j.jelechem.2018.11.040 [Google Scholar]
  97. A. Nsabimana, J. Lai, S. Li, P. Hui, Z. Liu, G. Xu, Analyst, 2017, 142, (3), 478 LINK https://doi.org/10.1039/C6AN02584F [Google Scholar]
  98. D.-J. Park, J.-H. Choi, W.-J. Lee, S. H. Um, B.-K. Oh, J. Nanosci. Nanotechnol., 2017, 17, (11), 8012 LINK https://doi.org/10.1166/jnn.2017.15073 [Google Scholar]
  99. Y. Li, M. Yao, T.-T. Li, Y.-Y. Song, Y.-J. Zhang, S.-Q. Liu, Anal. Methods, 2013, 5, (15), 3635 LINK https://doi.org/10.1039/c3ay40565f [Google Scholar]
  100. A. Joshi, W. Schuhmann, T. C. Nagaiah, Sensors Actuators B: Chem., 2016, 230, 544 LINK https://doi.org/10.1016/j.snb.2016.02.050 [Google Scholar]
/content/journals/10.1595/205651319X15472048744138
Loading
/content/journals/10.1595/205651319X15472048744138
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test