Skip to content
1887
Volume 63, Issue 2
  • ISSN: 2056-5135

Abstract

The present article reviews the synthesis routes and applications of platinum-based nanoparticles in emerging fields such as energy harvesting, health care applications and sensors. Increasingly, more useful, novel and multifunctional materials are needed with fewer side effects. This article provides an overview of Pt-based nanoparticles along with recent applications in electrochemistry, photochemistry, biosensors and gas sensors. In particular, platinum dioxide (Adams’ catalyst) has been used in many chemical reactions including hydrogenation, oxidation and reduction.

Loading

Article metrics loading...

/content/journals/10.1595/205651319X15498900266305
2019-01-01
2024-09-20
Loading full text...

Full text loading...

/deliver/fulltext/jmtr/63/2/Prabha_16a_Imp.html?itemId=/content/journals/10.1595/205651319X15498900266305&mimeType=html&fmt=ahah

References

  1. F. Bernardi, M. C. M. Alves, J. Morais, J. Phys. Chem. C, 2010, 114, (49), 21434 LINK https://doi.org/10.1021/jp106134r [Google Scholar]
  2. O. Muller, R. Roy, J. Less Common Metals, 1968, 16, (2), 129 LINK https://doi.org/10.1016/0022-5088(68)90070-2 [Google Scholar]
  3. L. K. Ono, B. Yuan, H. Heinrich, B. R. Cuenya, J. Phys. Chem. C, 2010, 114, (50), 22119 LINK https://doi.org/10.1021/jp1086703 [Google Scholar]
  4. B. He, Y. Ha, H. Liu, K. Wang, K. Y. Liew, J. Colloid Interface Sci., 2007, 308, (1), 105 LINK https://doi.org/10.1016/j.jcis.2006.12.031 [Google Scholar]
  5. A. Rabis, D. Kramer, E. Fabbri, M. Worsdale, R. Kötz, T. J. Schmidt, J. Phys. Chem. C, 2014, 118, (21), 11292 LINK https://doi.org/10.1021/jp4120139 [Google Scholar]
  6. A. Rabis, P. Rodriguez, T. J. Schmidt, ACS Catal., 2012, 2, (5), 864 LINK https://doi.org/10.1021/cs3000864 [Google Scholar]
  7. G. Hu, N. Yang, G. Xu, J. Xu, J. Appl. Geophys., 2018, 150, 118 LINK https://doi.org/10.1016/j.jappgeo.2017.12.011 [Google Scholar]
  8. H. Li, B. Lin, W. Yang, C. Zheng, Y. Hong, Y. Gao, T. Liu, S. Wu, Int. J. Coal Geol., 2016, 154–155, 82 LINK https://doi.org/10.1016/j.coal.2015.12.010 [Google Scholar]
  9. K. J. Datta, K. K. R. Datta, M. B. Gawande, V. Ranc, K. Čépe, V. Malgras, Y. Yamauchi, R. S. Varma, R. Zboril, Chem. Eur. J., 2016, 22, (5), 1577 LINK https://doi.org/10.1002/chem.201503441 [Google Scholar]
  10. A. Goswami, A. K, C. Aparicio, O. Tomanec, M. Petr, R. Pocklanova, M. B. Gawande, R. S. Varma, R. Zboril, ACS Appl. Mater. Interfaces, 2017, 9, (3), 2815 LINK https://doi.org/10.1021/acsami.6b13138 [Google Scholar]
  11. C.-F. Hsia, M. Madasu, M. H. Huang, Chem. Mater., 2016, 28, (9), 3073 LINK https://doi.org/10.1021/acs.chemmater.6b00377 [Google Scholar]
  12. H. M. Song, D. H. Anjum, R. Sougrat, M. N. Hedhili, N. M. Khashab, J. Mater. Chem., 2012, 22, (48), 25003 LINK https://doi.org/10.1039/c2jm35281h [Google Scholar]
  13. J. W. Hong, S. W. Kang, B.-S. Choi, D. Kim, S. B. Lee, S. W. Han, ACS Nano, 2012, 6, (3), 2410 LINK https://doi.org/10.1021/nn2046828 [Google Scholar]
  14. V. Georgakilas, M. Otyepka, A. B, V. Chandra, N. Kim, K. C. Kemp, P. Hobza, R. Zboril, K. S. Kim, Chem. Rev., 2012, 112, (11), 6156 LINK https://doi.org/10.1021/cr3000412 [Google Scholar]
  15. V. Georgakilas, J. N, K. C, J. A, A. B, K. S. Kim, R. Zboril, Chem. Rev., 2016, 116, (9), 5464 LINK https://doi.org/10.1021/acs.chemrev.5b00620 [Google Scholar]
  16. Y. Abe, M. Kawamura, K. Sasaki, Jpn. J. Appl. Phys., Part 1, 1999, 38, (4A), 2092 LINK https://doi.org/10.1143/jjap.38.2092 [Google Scholar]
  17. Y. Nagano, J. Therm. Anal. Calorim., 2002, 69, (3), 831 LINK https://doi.org/10.1023/a:1020651805170 [Google Scholar]
  18. N. Seriani, W. Pompe, L. C. Ciacchi, J. Phys. Chem. B, 2006, 110, (30), 14860 LINK https://doi.org/10.1021/jp063281r [Google Scholar]
  19. J. Zhensheng, X. Chanjuan, Z. Qingmei, Y. Feng, Z. Jiazheng, X. Jinzhen, J. Mol. Catal. A: Chem., 2003, 191, (1), 61 LINK https://doi.org/10.1016/s1381-1169(02)00029-8 [Google Scholar]
  20. N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z. L. Wang, Science, 2007, 316, (5825), 732 LINK https://doi.org/10.1126/science.1140484 [Google Scholar]
  21. J. Osorio-Guillén, S. Lany, S. V. Barabash, A. Zunger, Phys. Rev. Lett., 2006, 96, (10), 107203 LINK https://doi.org/10.1103/physrevlett.96.107203 [Google Scholar]
  22. J. A. Chan, S. Lany, A. Zunger, Phys. Rev. Lett., 2009, 103, (1), 016404 LINK https://doi.org/10.1103/physrevlett.103.016404 [Google Scholar]
  23. J. Hu, Z. Zhang, M. Zhao, H. Qin, M. Jiang, Appl. Phys. Lett., 2008, 93, (19), 192503 LINK https://doi.org/10.1063/1.3021085 [Google Scholar]
  24. M. V. Ganduglia-Pirovano, A. Hofmann, J. Sauer, Surf. Sci. Rep., 2007, 62, (6), 219 LINK https://doi.org/10.1016/j.surfrep.2007.03.002 [Google Scholar]
  25. N. H. Hong, N. Poirot, J. Sakai, Phys. Rev. B, 2008, 77, (3), 033205 LINK https://doi.org/10.1103/physrevb.77.033205 [Google Scholar]
  26. C. Das Pemmaraju, S. Sanvito, Phys. Rev. Lett., 2005, 94, (21), 217205 LINK https://doi.org/10.1103/physrevlett.94.217205 [Google Scholar]
  27. P. Dev, Y. Xue, P. Zhang, Phys. Rev. Lett., 2008, 100, (11), 117204 LINK https://doi.org/10.1103/physrevlett.100.117204 [Google Scholar]
  28. J. J. Palacios, J. Fernández-Rossier, L. Brey, Phys. Rev. B, 2008, 77, (19), 195428 LINK https://doi.org/10.1103/physrevb.77.195428 [Google Scholar]
  29. K.-J. Range, F. Rau, U. Klement, A. M. Heyns, Mater. Res. Bull., 1987, 22, (11), 1541 LINK https://doi.org/10.1016/0025-5408(87)90220-0 [Google Scholar]
  30. G. Kresse, J. Furthmüller, Phys. Rev. B, 1996, 54, (16), 11169 LINK https://doi.org/10.1103/physrevb.54.11169 [Google Scholar]
  31. M. C. Jung, H.-D. Kim, M. Han, W. Jo, D. C. Kim, Jpn. J. Appl. Phys., Part 1, 38, (8), 4872 LINK https://doi.org/10.1143/JJAP.38.4872 [Google Scholar]
  32. Y. Yang, O. Sugino, T. Ohno, Phys. Rev. B, 2012, 85, (3), 035204 LINK https://doi.org/10.1103/physrevb.85.035204 [Google Scholar]
  33. T. M. Pedersen, W. X. Li, B. Hammer, Phys. Chem. Chem. Phys., 2006, 8, (13), 1566 LINK https://doi.org/10.1039/b515166j [Google Scholar]
  34. E. M. Larsson, J. Millet, S. Gustafsson, M. Skoglundh, V. P. Zhdanov, C. Langhammer, ACS Catal., 2012, 2, (2), 238 LINK https://doi.org/10.1021/cs200583u [Google Scholar]
  35. H. Hong, H. Zhang, T. Han, F. He, H. Jin, Energy Procedia, 2017, 114, 344 LINK https://doi.org/10.1016/j.egypro.2017.03.1175 [Google Scholar]
  36. C. W. Scheeren, J. B. Domingos, G. Machado, J. Dupont, J. Phys. Chem. C, 2008, 112, (42), 16463 LINK https://doi.org/10.1021/jp804870j [Google Scholar]
  37. ‘Hydrosilylation of Alkynes and Their Derivatives – Regio- and Stereoselective Hydrosilylation of Alkynes Catalysed by Late Transition Metal Complexes’, in “Hydrosilylation – A Comprehensive Review on Recent Advances”, Vol. 1, ed. B. Marciniec, Springer Science and Business Media BV, Dordrecht, The Netherlands, 2009, p. 57 [Google Scholar]
  38. N. Sabourault, G. Mignani, A. Wagner, C. Mioskowski, Org. Lett., 2002, 4, (13), 2117 LINK https://doi.org/10.1021/ol025658r [Google Scholar]
  39. S. Putzien, E. Louis, O. Nuyken, F. E. Kühn, Catal. Sci. Technol., 2012, 2, (4), 725 LINK https://doi.org/10.1039/c2cy00367h [Google Scholar]
  40. K. Kinoshita, Thermochim. Acta, 1977, 20, (3), 297 LINK https://doi.org/10.1016/0040-6031(77)85084-3 [Google Scholar]
  41. J. Singh, M. Nachtegaal, E. M. C. Alayon, J. Stötzel, J. A. van Bokhoven, ChemCatChem, 2010, 2, (6), 653 LINK https://doi.org/10.1002/cctc.201000061 [Google Scholar]
  42. B. L. M. Hendriksen, S. C. Bobaru, J. W. M. Frenken, Catal. Today, 2005, 105, (2), 234 LINK https://doi.org/10.1016/j.cattod.2005.02.041 [Google Scholar]
  43. Y.-S. Hu, Y.-G. Guo, W. Sigle, S. Hore, P. Balaya, J. Maier, Nature Mater., 2006, 5, (9), 713 LINK https://doi.org/10.1038/nmat1709 [Google Scholar]
  44. C. L. McDaniel, J. Solid State Chem., 1974, 9, (2), 139 LINK https://doi.org/10.1016/0022-4596(74)90065-6 [Google Scholar]
  45. A. F. Lee, J. N. Naughton, Z. Liu, K. Wilson, ACS Catal., 2012, 2, (11), 2235 LINK https://doi.org/10.1021/cs300450y [Google Scholar]
  46. S. Mostafa, F. Behafarid, J. R, L. K, L. Li, J. C. Yang, A. I. Frenkel, B. R. Cuenya, J. Am. Chem. Soc., 2010, 132, (44), 15714 LINK https://doi.org/10.1021/ja106679z [Google Scholar]
  47. R. Xu, D. Wang, J. Zhang, Y. Li, Chem. – An Asian J., 2006, 1, (6), 888 LINK https://doi.org/10.1002/asia.200600260 [Google Scholar]
  48. V. Komanicky, H. Iddir, K.-C. Chang, A. Menzel, G. Karapetrov, D. Hennessy, P. Zapol, H. You, J. Am. Chem. Soc., 2009, 131, (16), 5732 LINK https://doi.org/10.1021/ja900459w [Google Scholar]
  49. G. Gökağaç, B. J. Kennedy, Zeitschrift für Naturforsch. B, 2002, 57, (2), 193 LINK https://doi.org/10.1515/znb-2002-0211 [Google Scholar]
  50. A. S. Aricò, A. K. Shukla, K. M. El-Khatib, P. Cretì, V. Antonucci, J. Appl. Electrochem., 1999, 29, (6), 673 LINK https://doi.org/10.1023/a:1003538230286 [Google Scholar]
  51. D.-J. Guo, H.-L. Li, J. Electroanal. Chem., 2004, 573, (1), 197 LINK https://doi.org/10.1016/s0022-0728(04)00369-9 [Google Scholar]
  52. J. H. Zhang, X. L. Zhou, J. A. Wang, J. Mol. Catal. A: Chem., 2006, 247, (1–2), 222 LINK https://doi.org/10.1016/j.molcata.2005.11.055 [Google Scholar]
  53. N. Burgos, M. Paulis, M. Mirari Antxustegi, M. Montes, Appl. Catal. B: Environ., 2002, 38, (4), 251 LINK https://doi.org/10.1016/s0926-3373(01)00294-6 [Google Scholar]
  54. S. K. Parayil, H. S. Kibombo, C.-M. Wu, R. Peng, T. Kindle, S. Mishra, S. P. Ahrenkiel, J. Baltrusaitis, N. M. Dimitrijevic, T. Rajh, R. T. Koodali, J. Phys. Chem. C, 2013, 117, (33), 16850 LINK https://doi.org/10.1021/jp405727k [Google Scholar]
  55. W. Y. Teoh, L. Mädler, R. Amal, J. Catal., 2007, 251, (2), 271 LINK https://doi.org/10.1016/j.jcat.2007.08.008 [Google Scholar]
  56. H. Wang, Z. Wu, Y. Liu, Y. Wang, Chemosphere, 2009, 74, (6), 773 LINK https://doi.org/10.1016/j.chemosphere.2008.10.032 [Google Scholar]
  57. H. S. Kibombo, C.-M. Wu, R. Peng, J. Baltrusaitis, R. T. Koodali, Appl. Catal. B: Environ., 2013, 136–137, 248 LINK https://doi.org/10.1016/j.apcatb.2013.01.062 [Google Scholar]
  58. F. B. Li, X. Z. Li, Chemosphere, 2002, 48, (10), 1103 LINK https://doi.org/10.1016/s0045-6535(02)00201-1 [Google Scholar]
  59. N. Seriani, Z. Jin, W. Pompe, L. C. Ciacchi, Phys. Rev. B, 2007, 76, (15), 155421 LINK https://doi.org/10.1103/physrevb.76.155421 [Google Scholar]
  60. A. V. Vorontsov, E. N. Savinov, J. Zhensheng, J. Photochem. Photobiol. A: Chem., 1999, 125, (1–3), 113 LINK https://doi.org/10.1016/s1010-6030(99)00073-8 [Google Scholar]
  61. M.-R. Gao, Z.-Y. Lin, J. Jiang, C.-H. Cui, Y.-R. Zheng, S.-H. Yu, Chem. - A Eur. J., 2012, 18, (27), 8423 LINK https://doi.org/10.1002/chem.201200353 [Google Scholar]
  62. D. A. Svintsitskiy, L. S. Kibis, A. I. Stadnichenko, S. V. Koscheev, V. I. Zaikovskii, A. I. Boronin, ChemPhysChem, 2015, 16, (15), 3318 LINK https://doi.org/10.1002/cphc.201500546 [Google Scholar]
  63. B. Sun, A. V. Vorontsov, P. G. Smirniotis, Langmuir, 2003, 19, (8), 3151 LINK https://doi.org/10.1021/la0264670 [Google Scholar]
  64. C. A. Emilio, M. I. Litter, M. Kunst, M. Bouchard, C. Colbeau-Justin, Langmuir, 2006, 22, (8), 3606 LINK https://doi.org/10.1021/la051962s [Google Scholar]
  65. B. Sun, P. G. Smirniotis, P. Boolchand, Langmuir, 2005, 21, (24), 11397 LINK https://doi.org/10.1021/la051262n [Google Scholar]
  66. M. Sarno, E. Ponticorvo, Int. J. Hydrogen Energy, 2017, 42, (37), 23631 LINK https://doi.org/10.1016/j.ijhydene.2017.03.017 [Google Scholar]
  67. D. Miller, H. Sanchez Casalongue, H. Bluhm, H. Ogasawara, A. Nilsson, S. Kaya, J. Am. Chem. Soc., 2014, 136, (17), 6340 LINK https://doi.org/10.1021/ja413125q [Google Scholar]
  68. G.-Y. Zhao, H.-L. Li, Appl. Surf. Sci., 2008, 254, (10), 3232 LINK https://doi.org/10.1016/j.apsusc.2007.10.086 [Google Scholar]
  69. J. P. Guerrette, S. M. Oja, B. Zhang, Anal. Chem., 2012, 84, (3), 1609 LINK https://doi.org/10.1021/ac2028672 [Google Scholar]
  70. J. T. Cox, J. P. Guerrette, B. Zhang, Anal. Chem., 2012, 84, (20), 8797 LINK https://doi.org/10.1021/ac302219p [Google Scholar]
  71. S. E. Fosdick, K. N. Knust, K. Scida, R. M. Crooks, Angew. Chem. Int. Ed., 2013, 52, (40), 10438 LINK https://doi.org/10.1002/anie.201300947 [Google Scholar]
  72. A. Lundgren, S. Munktell, M. Lacey, M. Berglin, F. Björefors, ChemElectroChem, 2016, 3, (3), 378 LINK https://doi.org/10.1002/celc.201500413 [Google Scholar]
  73. R. Hao, B. Zhang, Anal. Chem., 2016, 88, (1), 614 LINK https://doi.org/10.1021/acs.analchem.5b03548 [Google Scholar]
  74. J. Clausmeyer, W. Schuhmann, TrAC Trends Anal. Chem., 2016, 79, 46 LINK https://doi.org/10.1016/j.trac.2016.01.018 [Google Scholar]
  75. Y. Li, D. Bergman, B. Zhang, Anal. Chem., 2009, 81, (13), 5496 LINK https://doi.org/10.1021/ac900777n [Google Scholar]
  76. I. X. Green, W. Tang, M. Neurock, J. T. Yates, Science, 2011, 333, (6043), 736 LINK https://doi.org/10.1126/science.1207272 [Google Scholar]
  77. V. Subramanian, E. E. Wolf, P. V. Kamat, J. Phys. Chem. B, 2003, 107, (30), 7479 LINK https://doi.org/10.1021/jp0275037 [Google Scholar]
  78. S. Sato, R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science, 2002, 295, (5555), 626 LINK https://doi.org/10.1126/science.295.5555.626 [Google Scholar]
  79. R. K. Nagarale, U. Hoss, A. Heller, J. Am. Chem. Soc., 2012, 134, (51), 20783 LINK https://doi.org/10.1021/ja3103549 [Google Scholar]
  80. J. W. Hennek, Y. Xia, K. Everaerts, M. C, A. Facchetti, T. J. Marks, ACS Appl. Mater. Interfaces, 2012, 4, (3), 1614 LINK https://doi.org/10.1021/am201776p [Google Scholar]
  81. V. M. Dhavale, S. Kurungot, J. Phys. Chem. C, 2012, 116, (13), 7318 LINK https://doi.org/10.1021/jp300628j [Google Scholar]
  82. S. M. Devi, A. Nivetha, I. Prabha, J. Supercond. Novel Magn., 2018, Review Paper LINK https://doi.org/10.1007/s10948-018-4929-8 [Google Scholar]
  83. J. B. Tracy, D. N. Weiss, D. P. Dinega, M. G. Bawendi, Phys. Rev. B, 2005, 72, (6), 064404 LINK https://doi.org/10.1103/physrevb.72.064404 [Google Scholar]
  84. S. Behrens, H. Bönnemann, N. Matoussevitch, A. Gorschinski, E. Dinjus, W. Habicht, J. Bolle, S. Zinoveva, N. Palina, J. Hormes, H. Modrow, S. Bahr, V. Kempter, J. Phys.: Condens. Matter, 2006, 18, (38), S2543 LINK https://doi.org/10.1088/0953-8984/18/38/s02 [Google Scholar]
  85. X. Luo, A. Morrin, A. J. Killard, M. R. Smyth, Electroanalysis, 2006, 18, (4), 319 LINK https://doi.org/10.1002/elan.200503415 [Google Scholar]
  86. I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nature Mater., 2005, 4, (6), 435 LINK https://doi.org/10.1038/nmat1390 [Google Scholar]
  87. A. Heller, B. Feldman, Chem. Rev., 2008, 108, (7), 2482 LINK https://doi.org/10.1021/cr068069y [Google Scholar]
  88. L. Meng, J. Jin, G. Yang, T. Lu, H. Zhang, C. Cai, Anal. Chem., 2009, 81, (17), 7271 LINK https://doi.org/10.1021/ac901005p [Google Scholar]
  89. W.-Z. Jia, K. Wang, Z.-J. Zhu, H.-T. Song, X.-H. Xia, Langmuir, 2007, 23, (23), 11896 LINK https://doi.org/10.1021/la7020269 [Google Scholar]
  90. J. Homola, Sensors Actuators B: Chem., 1997, 41, (1–3), 207 LINK https://doi.org/10.1016/s0925-4005(97)80297-3 [Google Scholar]
  91. A. K. Sharma, B. D. Gupta, Sensors Actuators B: Chem., 2004, 100, (3), 423 LINK https://doi.org/10.1016/j.snb.2004.02.013 [Google Scholar]
  92. S. Lal, S. Link, N. J. Halas, Nature Photonics, 2007, 1, (11), 641 LINK https://doi.org/10.1038/nphoton.2007.223 [Google Scholar]
  93. J. Hurly, P. T. Wedepohl, J. Mater. Sci., 1993, 28, (20), 5648 LINK https://doi.org/10.1007/bf00367841 [Google Scholar]
  94. L. M. Velichkina, A. N. Pestryakov, A. V. Vosmerikov, I. V. Tuzovskaya, N. E. Bogdanchikova, M. Avalos, M. Farias, H. Tiznado, Pet. Chem., 2008, 48, (3), 201 LINK https://doi.org/10.1134/s0965544108030055 [Google Scholar]
  95. A. Chen, P. Holt-Hindle, Chem. Rev., 2010, 110, (6), 3767 LINK https://doi.org/10.1021/cr9003902 [Google Scholar]
  96. H. Yin, L. Cui, S. Ai, H. Fan, L. Zhu, Electrochim. Acta, 2010, 55, (3), 603 LINK https://doi.org/10.1016/j.electacta.2009.09.020 [Google Scholar]
  97. G. M. Klečka, C. A. Staples, K. E. Clark, N. van der Hoeven, D. E. Thomas, S. G. Hentges, Environ. Sci. Technol., 2009, 43, (16), 6145 LINK https://doi.org/10.1021/es900598e [Google Scholar]
  98. L. N. Vandenberg, R. Hauser, M. Marcus, N. Olea, W. V. Welshons, Reprod. Toxicol., 2007, 24, (2), 139 LINK https://doi.org/10.1016/j.reprotox.2007.07.010 [Google Scholar]
  99. H. Mielke, U. Gundert-Remy, Toxicol. Lett., 2009, 190, (1), 32 LINK https://doi.org/10.1016/j.toxlet.2009.06.861 [Google Scholar]
  100. K. V. Ragavan, N. K. Rastogi, M. S. Thakur, TrAC Trends Anal. Chem., 2013, 52, 248 LINK https://doi.org/10.1016/j.trac.2013.09.006 [Google Scholar]
  101. J. A. Rather, K. De Wael, Sensors Actuators B: Chem., 2013, 176, 110 LINK https://doi.org/10.1016/j.snb.2012.08.081 [Google Scholar]
  102. L. Hu, C.-C. Fong, X. Zhang, L. L. Chan, P. K. S. Lam, P. K. Chu, K.-Y. Wong, M. Yang, Environ. Sci. Technol., 2016, 50, (8), 4430 LINK https://doi.org/10.1021/acs.est.5b05857 [Google Scholar]
  103. Z. Zheng, Y. Du, Z. Wang, Q. Feng, C. Wang, Analyst, 2013, 138, (2), 693 LINK https://doi.org/10.1039/c2an36569c [Google Scholar]
  104. R. Wannapob, P. Thavarungkul, S. Dawan, A. Numnuam, W. Limbut, P. Kanatharana, Electroanalysis, 2017, 29, (2), 472 LINK https://doi.org/10.1002/elan.201600371 [Google Scholar]
  105. V. Malgras, H. Ataee-Esfahani, H. Wang, B. Jiang, C. Li, K. C.-W. Wu, J. H. Kim, Y. Yamauchi, Adv. Mater., 2015, 28, (6), 993 LINK https://doi.org/10.1002/adma.201502593 [Google Scholar]
  106. Q. Shen, L. Jiang, H. Zhang, Q. Min, W. Hou, J.-J. Zhu, J. Phys. Chem. C, 2008, 112, (42), 16385 LINK https://doi.org/10.1021/jp8060043 [Google Scholar]
  107. D.-S. Park, M.-S. Won, R. N. Goyal, Y.-B. Shim, Sensors Actuators B: Chem., 2012, 174, 45 LINK https://doi.org/10.1016/j.snb.2012.08.017 [Google Scholar]
  108. H. R. Zafarani, L. Rassaei, E. J. R. Sudhölter, B. D. B. Aaronson, F. Marken, Sensors Actuators B: Chem., 2018, 255, 2904 LINK https://doi.org/10.1016/j.snb.2017.09.110 [Google Scholar]
  109. I. T. Bae, E. Yeager, X. Xing, C. C. Liu, J. Electroanal. Chem. Interfacial Electrochem., 1991, 309, (1–2), 131 LINK https://doi.org/10.1016/0022-0728(91)87009-s [Google Scholar]
  110. C. Dong, X. Liu, X. Xiao, G. Chen, Y. Wang, I. Djerdj, J. Mater. Chem. A, 2014, 2, (47), 20089 LINK https://doi.org/10.1039/c4ta04251d [Google Scholar]
  111. S. Shao, Y. Chen, S. Huang, F. Jiang, Y. Wang, R. Koehn, RSC Adv., 2017, 7, (63), 39859 LINK https://doi.org/10.1039/c7ra07478f [Google Scholar]
  112. B. Yang, J. Liu, H. Qin, Q. Liu, X. Jing, H. Zhang, R. Li, G. Huang, J. Wang, Ceram. Int., 2018, 44, (9), 10426 LINK https://doi.org/10.1016/j.ceramint.2018.03.059 [Google Scholar]
  113. N. Murata, T. Suzuki, M. Kobayashi, F. Togoh, K. Asakura, Phys. Chem. Chem. Phys., 2013, 15, (41), 17938 LINK https://doi.org/10.1039/c3cp52490f [Google Scholar]
/content/journals/10.1595/205651319X15498900266305
Loading
/content/journals/10.1595/205651319X15498900266305
Loading

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test