Skip to content
Volume 64, Issue 1
  • ISSN: 2056-5135


Recycling of plastic is an established technology contributing to a circular economy. A sustainable society requires recycling to produce high quality feedstocks from all types of reusable waste. New recycling technologies will help to improve waste management practices, for instance dissolving plastic waste in a solvent to purify and maintain its material properties. In solution it is also possible to depolymerise polymers into monomers that can be used to remake virgin-grade material. In this review the advantages and disadvantages of three solvent-based recycling processes will be considered: separation of cotton and polyester (polyethylene terephthalate (PET)) textiles, chemical recycling of polylactic acid (PLA) and dissolution-precipitation of polyvinylchloride (PVC). The current state of the art and future prospects are discussed, including a brief overview of how solvents are being used to process other types of plastic waste.


Article metrics loading...

Loading full text...

Full text loading...



  1. Shen L., Worrell E., and Patel M. K. Biofuels Bioprod. Biorefining, 2012, 6, (6), 625 LINK [Google Scholar]
  2. Clark J. H., Farmer T. J., Herrero-Davila L., and Sherwood J. Green Chem., 2016, 18, (14), 3914 LINK [Google Scholar]
  3. Mathews J. A., and Tan H. Nature, 2016, 531, (7595), 440 LINK [Google Scholar]
  4. Wiesmeth H., and Häckl D. Waste Manag. Res., 2011, 29, (9), 891 LINK [Google Scholar]
  5. Gupt Y., and Sahay S. Waste Manag. Res., 2015, 33, (7), 595 LINK [Google Scholar]
  6. Lozano R., Carpenter A., and Lozano F. J. Resour. Conserv. Recycl., 2014, 86, 53 LINK [Google Scholar]
  7. ‘Sector: Clothing and Fashion industry’, Good Practices, European Circular Economy Stakeholder Platform, European Union: LINK (Accessed on 7th March 2019) [Google Scholar]
  8. “The New Plastics Economy: Rethinking the Future of Plastics and Catalysing Action”, Ellen MacArthur Foundation, Cowes, UK, 2017, 66 pp LINK [Google Scholar]
  9. “Handbook of Plastics Recycling”, ed. La F. Mantia, Rapra Technology Ltd, Shrewsbury, UK, 2002 [Google Scholar]
  10. Garcia J. M., and Robertson M. L. Science, 2017, 358, (6365), 870 LINK [Google Scholar]
  11. ‘Plastics – Recycled Plastics – Characterisation of Plastics Waste’, EN 15347:2007, CEN, Brussels, Belgium, 2007 LINK,FSP_ORG_ID:22665,6230&cs=1C869F355C35971A71BEAC2CACD3F13B3 [Google Scholar]
  12. Hong M., and Chen E. Y.-X. Green Chem., 2017, 19, (16), 3692 LINK [Google Scholar]
  13. Zhao Y.-B., Lv X.-D., and Ni H.-G. Chemosphere, 2018, 209, 707 LINK [Google Scholar]
  14. Bart J. C. J., Gucciardi E., and Cavallaro S. “Biolubricants: Science and Technology”, Series in Energy, No. 46, Woodhead Publishing, Cambridge, UK, 2013, 944 pp [Google Scholar]
  15. Sherwood J., Clark J. H., Farmer T. J., Herrero-Davila L., and Moity L. Molecules, 2017, 22, (1), 48 LINK [Google Scholar]
  16. ‘PET Recycling Industry Installed Capacity Reviewed’, Plastics Recyclers Europe, Brussels, Belgium, 3rd July, 2018 LINK [Google Scholar]
  17. Serad S. L. Hoechst Celanese Corp, ‘Polyester Dissolution for Polyester/Cotton Blend Recycle’, US Patent 5,342,854; 1994 [Google Scholar]
  18. Brinks G. J., Bouwhuis G. H., Agrawal P. B., and Gooijer H. Agrawal Ecolabs, Filo Engineering, Gerrit Bouwhuis BV and Brinks Management Advice/Techne BV, ‘Processing of Cotton-Polyester Waste Textile’, World Patent Appl. 2014/081,291 [Google Scholar]
  19. ‘Worn Again Technologies Breaks Boundaries, Raising £5 Million Investment, Accelerating It To Market’, Worn Again, London, UK, 14th July, 2018 LINK [Google Scholar]
  20. Walker A. Worn Again Footwear and Accessories Ltd, ‘Polyester Recycling’, World Patent Appl. 2014/045,062 [Google Scholar]
  21. Poulakis J. G., and Papaspyrides C. D. J. Appl. Polym. Sci., 2001, 81, (1), 91 LINK [Google Scholar]
  22. Sherwood J., Farmer T. J., and Clark J. H. Chem, 2018, 4, (9), 2010 LINK [Google Scholar]
  23. Walker A. Worn Again Footwear and Accessories Ltd, ‘Recycling Process’, World Patent Appl. 2016/012,755 [Google Scholar]
  24. Prat D., Wells A., Hayler J., Sneddon H., McElroy C. R., Abou-Shehada S., and Dunn P. J. Green Chem., 2016, 18, (1), 288 LINK [Google Scholar]
  25. Nakao T., Chikatsune T., Nakashima M., Suzuki M., and Nagano H. Teijin Ltd, ‘Method for Recycling PET Bottle’, US Patent 7,462,649; 2008 [Google Scholar]
  26. Carné Sánchez A., and Collinson S. R. Eur. Polym. J., 2011, 47, (10), 1970 LINK [Google Scholar]
  27. Alaerts L., Augustinus M., and Van Acker K. Sustainability, 2018, 10, (5), 1487 LINK [Google Scholar]
  28. Ulrici A., Serranti S., Ferrari C., Cesare D., Foca G., and Bonifazi G. Chemom. Intell. Lab. Syst., 2013, 122, 31 LINK [Google Scholar]
  29. Foley E. A., Campanelli J. R., and Anneaux B. L. Zeus Industrial Products Inc, ‘Polymer Alcoholysis’, US Patent Appl. 2018/0,051,156 [Google Scholar]
  30. Anneaux B., Campanelli J., and Foley E. ‘Low Temperature Solution Depolymerization of PLA’, Zeus Industrial Products, Orangeburg, USA, 5pp: LINK (Accessed on 7th March 2019) [Google Scholar]
  31. Castro-Aguirre E., Iñiguez-Franco F., Samsudin H., Fang X., and Auras R. Adv. Drug Deliv. Rev., 2016, 107, 333 LINK [Google Scholar]
  32. Coszach P., Bogaert J.-C., and Willocq J. ‘Chemical Recycling of PLA by Hydrolysis’, US Patent 8,431,683; 2013 [Google Scholar]
  33. Sherwood J. Angew. Chemie Int. Ed., 2018, 57, (43), 14286 LINK [Google Scholar]
  34. Coszach P., Bogaert J.-C., and Willocq J. ‘Chemical Recycling of PLA by Alcoholysis’, US Patent 8,481,675; 2013 [Google Scholar]
  35. Cosate de Andrade M. F., Souza P. M. S., Cavalett O., and Morales A. R. J. Polym. Environ., 2016, 24, (4), 372 LINK [Google Scholar]
  36. Piemonte V., Sabatini S., and Gironi F. J. Polym. Environ., 2013, 21, (3), 640 LINK [Google Scholar]
  37. Hamad K., Kaseem M., and Deri F. Polym. Degrad. Stab., 2013, 98, (12), 2801 LINK [Google Scholar]
  38. Niaounakis M. Eur. Poly. J., 2019, 114, 464 LINK [Google Scholar]
  39. ‘Closure of Operation in Italy / Phthalates Issue Under REACH Brings Down European PVC Recycling Project’,, 4th July, 2018: LINK (Accessed on 6th August 2019)
  40. ‘Solvay’s First PVC Recycling Plant Onstream’,, 7th March, 2002: LINK (Accessed on 5th March 2019)
  41. Vandenhende B., and Dumont J.-P. ‘Method for Recycling a Plastic Material’, World Patent Appl. 2001/070,865 [Google Scholar]
  42. Vandenhende B., Yernaux J.-M., and Scheffer J. ‘Process for Recycling Polyvinyl Chloride Articles’, European Patent Appl. 1999/945,481 [Google Scholar]
  43. ‘Authorisation List’, ECHA, Helsinki, Finland: LINK (Accessed on 7th March 2019)
  44. ‘Substance Information – Bis(2-Ethylhexyl) Phthalate’, ECHA, Helsinki, Finland: LINK (Accessed on 7th March 2019)
  45. ‘Adopted Opinions and Previous Consultations on Applications for Authorisation – Bis(2-Ethylhexyl) Phthalate’, ECHA, Helsinki, Finland: LINK (Accessed on 7th March 2019)
  46. “Plastics – The Facts 2018 – An Analysis of European Plastics Production, Demand and Waste Data”, PlasticsEurope, Brussels, Belgium, 2018 LINK [Google Scholar]
  47. Miandad R., Barakat M. A., Aburiazaiza A. S., Rehan M., and Nizami A. S. Process Saf. Environ. Prot., 2016, 102, 822 LINK [Google Scholar]
  48. ‘SPR Japan: World’s Largest Waste-Plastics-to-Oil Recovery Plant (CHP Facility)’, Klean Industries, Vancouver, Canada: LINK (Accessed on 7th March 2019)
  49. ‘RT7000 – Engineering’, Recycling Technologies, Swindon, UK: LINK (Accessed on 7th March 2019)
  50. ‘BASF for the First Time Makes Products with Chemically Recycled Plastics’, P385/18e, BASF, Ludwigshafen, Germany, 13th December, 2018 LINK
  51. Pappa G., Boukouvalas C., Giannaris C., Ntaras N., Zografos V., Magoulas K., Lygeros A., and Tassios D. Resour. Conserv. Recycl., 2001, 34, (1), 33 LINK [Google Scholar]
  52. Achilias D. S., Roupakias C., Megalokonomos P., Lappas A. A., and Antonakou E. V. J. Hazard. Mater., 2007, 149, (3), 536 LINK [Google Scholar]
  53. Sperber R. J., and Rosen S. L. Polym. Eng. Sci., 1976, 16, (4), 246 LINK [Google Scholar]
  54. Yousef S., Mumladze T., Tatariants M., Kriūkienė R., Makarevicius V., Bendikiene R., and Denafas G. J. Clean. Prod., 2018, 197, 379 LINK [Google Scholar]
  55. Mumladze T., Yousef S., Tatariants M., Kriūkienė R., Makarevicius V., Lukošiūtė S.-I., Bendikiene R., and Denafas G. Green Chem., 2018, 20, (15), 3604 LINK [Google Scholar]
  56. Abou-Shehada S., Clark J. H., Paggiola G., and Sherwood J. Chem. Eng. Process.: Process Intensif., 2016, 99, 88 LINK [Google Scholar]
  57. Preston R. ‘Rejected Recycling Soars in Latest Figures’, MRW, EMAP Publishing Ltd, London, UK, 19th December, 2016 LINK [Google Scholar]
  58. Paci M., and La Mantia F. P. Polym. Degrad. Stab., 1999, 63, (1), 11 LINK [Google Scholar]
  59. Braun D. Prog. Polym. Sci., 2002, 27, (10), 2171 LINK [Google Scholar]
  60. Maharana T., Negi Y. S., and Mohanty B. Polym. Plast. Technol. Eng., 2007, 46, (7), 729 LINK [Google Scholar]
  61. Jessop P. G., Kozycz L., Rahami Z. G., Schoenmakers D., Boyd A. R., Wechsler D., and Holland A. M. Green Chem., 2011, 13, (3), 619 LINK [Google Scholar]
  62. García M. T., Gracia I., Duque G., de Lucas A., and Rodríguez J. F. Waste Manag., 2009, 29, (6), 1814 LINK [Google Scholar]
  63. Noguchi T., Miyashita M., Inagaki Y., and Watanabe H. Packag. Technol. Sci., 1998, 11, (1), 19 LINK<19::aid-pts414>;2-x [Google Scholar]
  64. Ran Y., Byrne F., Ingram I. D. V., and North M. ChemSusChem, 2019, 25, (19), 4951 LINK [Google Scholar]
  65. ‘Poisoning the Poor – Electronic Waste in Ghana’, Greenpeace, Amsterdam, The Netherlands, 5th August, 2008 LINK [Google Scholar]
  66. Weeden G. S., Soepriatna N. H., and Wang N.-H. L. Environ. Sci. Technol., 2015, 49, (4), 2425 LINK [Google Scholar]
  67. Zhao Y.-B., Lv X.-D., Yang W.-D., and Ni H.-G. Waste Manag., 2017, 69, 393 LINK [Google Scholar]
  68. Chandrasekaran S. R., Avasarala S., Murali D., Rajagopalan N., and Sharma B. K. ACS Sustain. Chem. Eng., 2018, 6, (4), 4594 LINK [Google Scholar]
  69. Achilias D. S., Antonakou E. V., Koutsokosta E., and Lappas A. A. J. Appl. Polym. Sci., 2009, 114, (1), 212 LINK [Google Scholar]
  70. Evangelopoulos P., Arato S., Persson H., Kantarelis E., and Yang W. Waste Manag., 2019, 94, 165 LINK [Google Scholar]
  71. Zhang C.-C., and Zhang F.-S. J. Hazard. Mater., 2012, 221–222, 193 LINK [Google Scholar]
  72. Freegard K., Tan G., and Morton R. “Develop a Process to Separate Brominated Flame Retardants from WEEE Polymers – Final Report”, The Waste & Resources Action Programme (WRAP), Banbury, UK, November, 2006, 335 pp LINK [Google Scholar]
  73. Maeurer A., Schlummer M., and Beck O. US Patent 8,138,232; 2012 [Google Scholar]
  74. Brooks A. L., Wang S., and Jambeck J. R. Sci. Adv., 2018, 4, (6), eaat0131 LINK [Google Scholar]

Data & Media loading...

  • Article Type: Research Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error